Home
Class 12
MATHS
"If "y=f(x^(3)),z=g(x^(5)),f'(x)=tan x, ...

`"If "y=f(x^(3)),z=g(x^(5)),f'(x)=tan x, and g'(x) = sec x, " then find the value of of" lim_(xrarr0)((dy//dz))/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit: \[ \lim_{x \to 0} \frac{dy/dz}{x} \] where \( y = f(x^3) \) and \( z = g(x^5) \) with \( f'(x) = \tan x \) and \( g'(x) = \sec x \). ### Step 1: Differentiate \( y \) with respect to \( x \) Using the chain rule, we have: \[ \frac{dy}{dx} = f'(x^3) \cdot \frac{d}{dx}(x^3) = f'(x^3) \cdot 3x^2 \] Substituting \( f'(x) = \tan x \): \[ \frac{dy}{dx} = \tan(x^3) \cdot 3x^2 \] ### Step 2: Differentiate \( z \) with respect to \( x \) Similarly, for \( z \): \[ \frac{dz}{dx} = g'(x^5) \cdot \frac{d}{dx}(x^5) = g'(x^5) \cdot 5x^4 \] Substituting \( g'(x) = \sec x \): \[ \frac{dz}{dx} = \sec(x^5) \cdot 5x^4 \] ### Step 3: Find \( \frac{dy}{dz} \) Using the formula for derivatives: \[ \frac{dy}{dz} = \frac{dy/dx}{dz/dx} = \frac{\tan(x^3) \cdot 3x^2}{\sec(x^5) \cdot 5x^4} \] This simplifies to: \[ \frac{dy}{dz} = \frac{3 \tan(x^3)}{5 \sec(x^5) \cdot x^2} \] ### Step 4: Substitute into the limit Now we substitute this into the limit: \[ \lim_{x \to 0} \frac{dy/dz}{x} = \lim_{x \to 0} \frac{3 \tan(x^3)}{5 \sec(x^5) \cdot x^3} \] ### Step 5: Evaluate the limit As \( x \to 0 \): - \( \tan(x^3) \approx x^3 \) (since \( \tan u \approx u \) for small \( u \)) - \( \sec(x^5) \approx 1 \) (since \( \sec u \approx 1 \) for small \( u \)) Thus, we have: \[ \lim_{x \to 0} \frac{3 \tan(x^3)}{5 \sec(x^5) \cdot x^3} = \lim_{x \to 0} \frac{3 \cdot x^3}{5 \cdot 1 \cdot x^3} = \frac{3}{5} \] ### Final Answer The value of the limit is: \[ \frac{3}{5} \]

To solve the problem, we need to find the limit: \[ \lim_{x \to 0} \frac{dy/dz}{x} \] where \( y = f(x^3) \) and \( z = g(x^5) \) with \( f'(x) = \tan x \) and \( g'(x) = \sec x \). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.7|6 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.8|15 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.5|16 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=f(x^3),z=g(x^5),f^(prime)(x)=tanx ,a n dg^(prime)(x)=secx , then find the value of (lim)_(xvec0)(((dy)/(dz)))/x

If y=f(x^(3)),z=g(x^(2)),f'(x),=cosx and g'(x)=sinx," then "(dy)/(dz) is

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

The value of lim_(xrarr0) (a^x-b^x)/(x) ,is

The value of lim_(xrarr0) (|x|)/(x) , is

Evaluate: lim_(xrarr0)x^x

The value of lim_(xrarr0){tan((pi)/(4)+x)}^(1//x) , is

If f(x+2)=3x+11 and g(f(x))=2x, find the value of g(5).

lim_(xrarr0)x sec x

Value of limit lim_(xrarr0^(+))x^(x^(x)).ln(x) is