Home
Class 12
MATHS
Let f(x^m y^n)=mf(x)+nf(y) for all x , y...

Let `f(x^m y^n)=mf(x)+nf(y)` for all `x , y in R^+` and for all `m ,n in Rdot` If `f^(prime)(x)` exists and has the value `e/x ,` then find `(lim)_(xvec0)(f(1+x))/x`

Text Solution

Verified by Experts

The correct Answer is:
e

For any `x in R^(+),` we have
`therefore" "f(1)=f(1)+f(1)" [Putting x = y = m= n =1]"`
`"or "f(1)=0`
`"or "underset(xrarr0)lim(f(1+x))/(x)=underset(xrarr0)lim(f'(1+x))/(1)" (using L' Hopital's rule)"`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Execrises|137 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|29 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.8|15 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)(0)=3. Find f^(prime)(5)dot

Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)(0)=3. Find f^(prime)(5)dot

Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)(0)=3. Find f^(prime)(5)dot

A function f: R->R satisfies the equation f(x+y)=f(x)f(y) for all x , y in R and f(x)!=0 for all x in Rdot If f(x) is differentiable at x=0a n df^(prime)(0)=2, then prove that f^(prime)(x)=2f(x)dot

Let f(x+y)=f(x)+f(y)+2x y-1 for all real xa n dy and f(x) be a differentiable function. If f^(prime)(0)=cosalpha, the prove that f(x)>0AAx in Rdot

Let f(x+y)=f(x)+f(y)+2x y-1 for all real xa n dy and f(x) be a differentiable function. If f^(prime)(0)=cosalpha, the prove that f(x)>0AAx in Rdot

Let f(x+y)=f(x)+f(y)+2x y-1 for all real xa n dy and f(x) be a differentiable function. If f^(prime)(0)=cosalpha, the prove that f(x)>0AAx in Rdot

Let f(x+y)=f(x)+f(y)+2x y-1 for all real x and y and f(x) be a differentiable function. If f^(prime)(0)=cosalpha, the prove that f(x)>0AAx in Rdot

If y=f(x^3),z=g(x^5),f^(prime)(x)=tanx ,a n dg^(prime)(x)=secx , then find the value of (lim)_(xvec0)(((dy)/(dz)))/x

Let f:R to R such that f(x+y)+f(x-y)=2f(x)f(y) for all x,y in R . Then,