Home
Class 12
MATHS
"Prove that "lim(hrarr0) (f(x+h)+f(x-h)-...

`"Prove that "lim_(hrarr0) (f(x+h)+f(x-h)-2f(x))/(h^(2))=f''(x)" (without using L' Hospital's rule)".`

Text Solution

AI Generated Solution

To prove that \[ \lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = f''(x) \] we will follow a systematic approach without using L'Hôpital's rule. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Execrises|137 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|29 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.8|15 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Prove that lim_(h to 0) (f(x+h)+f(x-h)-2f(x))/(h^(2))=f''(x)" (without using L' Hospital's rule)".

Prove that lim_(x->0) (f(x+h)+f(x-h)-2f(x))/h^2 = f''(x) (without using L' Hospital srule).

lim_(hrarr0) ((e+h)^(In(e+h))-e)/(h) is-

If f(x)= x^2 , then (f(x+h)-f(x))/(h) =

Evaluate: ("lim")_(xto0)(e^x-1-x)/(x^2), without using LHospitals rule and expansion f the series.

If f'(3)=2 , then lim_(h->0)(f(3+h^2)-f(3-h^2))/(2h^2) is

The value of lim_(h to 0) (f(x+h)+f(x-h))/h is equal to

"If "f(x)=lim_(hrarr0) ((sin(x+h))^(log_(e)(x+h))-(sin x)^(log_(e)x))/(h)" then find "f(pi//2).

"If "f(x)=lim_(hrarr0) ((sin(x+h))^(log_(e)(x+h))-(sin x)^(log_(e)x))/(h)" then find "f(pi//2).

If f(x),g(x)a n dh(x) are three polynomial of degree 2, then prove that "phi(x)=|{:(f(x),g(x),h(x)),(f'(x),g'(x),h'(x)),(f''(x),g''(x),h''(x)):}| is a constant polynomial.