Home
Class 12
MATHS
If y=x^((logx)^log(logx)) then (dy)/(dx)...

If `y=x^((logx)^log(logx))` then `(dy)/(dx)=`

A

`(y)/(x)((In x^(x-1))"+2 In x In(In x))"`

B

`(y)/(x)(log x)^(log (log x))(2 log (log x )+1)`

C

`(y)/(" x In x")[(In x )^(2)+2In (In x)]`

D

`(y)/(x)(log y)/(log x)[2 log (log x)+1]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y = x^{(\log x)^{\log(\log x)}} \) and find \( \frac{dy}{dx} \), we will follow these steps: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides: \[ \log y = \log\left(x^{(\log x)^{\log(\log x)}}\right) \] ### Step 2: Use the power rule of logarithms Using the power rule of logarithms, we can simplify the right-hand side: \[ \log y = (\log x)^{\log(\log x)} \cdot \log x \] ### Step 3: Rewrite the equation This simplifies to: \[ \log y = (\log x)^{\log(\log x) + 1} \] ### Step 4: Differentiate both sides Now, we differentiate both sides with respect to \( x \). Using implicit differentiation on the left side and the product rule on the right side: \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}\left((\log x)^{\log(\log x) + 1}\right) \] ### Step 5: Differentiate the right-hand side Using the chain rule and product rule, we differentiate: Let \( u = \log x \) and \( v = \log(\log x) + 1 \). Then we have: \[ \frac{d}{dx}(u^v) = u^v \left( v' \log u + v \cdot \frac{u'}{u} \right) \] Where: - \( u' = \frac{1}{x} \) - \( v' = \frac{1}{\log x} \cdot \frac{1}{x} \) Substituting these into our equation gives: \[ \frac{1}{y} \frac{dy}{dx} = (\log x)^{\log(\log x) + 1} \left( \frac{1}{\log x} \cdot \frac{1}{x} \log(\log x) + (\log(\log x) + 1) \cdot \frac{1}{x} \right) \] ### Step 6: Solve for \( \frac{dy}{dx} \) Now, we can isolate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = y \cdot \frac{1}{x} \cdot (\log x)^{\log(\log x) + 1} \left( \frac{\log(\log x)}{\log x} + \log(\log x) + 1 \right) \] ### Step 7: Substitute back for \( y \) Recall that \( y = x^{(\log x)^{\log(\log x)}} \). So we can substitute this back into our equation: \[ \frac{dy}{dx} = x^{(\log x)^{\log(\log x)}} \cdot \frac{1}{x} \cdot (\log x)^{\log(\log x) + 1} \left( \frac{\log(\log x)}{\log x} + \log(\log x) + 1 \right) \] ### Step 8: Simplify the expression This simplifies to: \[ \frac{dy}{dx} = \frac{y}{x} \cdot (\log x)^{\log(\log x) + 1} \left( \frac{\log(\log x)}{\log x} + \log(\log x) + 1 \right) \] ### Final Result The final expression for \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{y}{x} \left( \log(\log x) + 1 \right) \cdot (\log x)^{\log(\log x)} \]

To solve the problem \( y = x^{(\log x)^{\log(\log x)}} \) and find \( \frac{dy}{dx} \), we will follow these steps: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides: \[ \log y = \log\left(x^{(\log x)^{\log(\log x)}}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|24 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Matrix Match Type|6 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Execrises|137 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=x^(logx)+(logx)^x then find (dy)/(dx)

If y=x^((logx)^("log"(logdotx))),t h e n(dy)/(dx)i s (a) y/x(1n x^(x-1))+21 nx1n(1nx)) (b) y/x(logx)^("log"(logx))(2log(logx)+1) (c) y/(x1nx)[(1nx)^2+21 n(1nx)] (d) y/x(logy)/(logx)[2log(logx)+1]

d/(dx) log(logx) = ?

d/(dx) log(logx) = ?

f(x)=tan^(-1){log(e/x^2)/log(ex^2)}+tan^(--1)((3+2logx)/(1-6logx)) then find (d^ny)/(dx^n)

" If "y=sqrt(logx+sqrt(logx+sqrt(logx+...oo)))," then "(dy)/(dx) is

int(dx)/(x.logx.log(logx))=

If y=(tanx)^(logx)+cos^2(pi/4) , find (dy)/(dx)

If y=(logx)/x , show that (d^2y)/(dx^2)=(2logx-3)/(x^3) .

If y=(logx)/x ,show\ tha t(d^2y)/(dx^2)=(2logx-3)/(x^3)

CENGAGE ENGLISH-DIFFERENTIATION-Multiple Correct Answers Type
  1. Let f(x)=(sqrt(x-2sqrt(x-1)))/(sqrt(x-1)-1).x then

    Text Solution

    |

  2. If x^3-2x^2y^2+5x+y-5=0a n dy(1)=1,t h e n y^(prime)(1)=4/3 (b) y^(1)...

    Text Solution

    |

  3. If y=x^((logx)^log(logx)) then (dy)/(dx)=

    Text Solution

    |

  4. If f(x-y), f(x) f(y), and f(x+y) are in A.P. for all x, y, and f(0) ne...

    Text Solution

    |

  5. If y=cos^(-1)((2x)/(1+x^2)),t h e n(dy)/(dx)i s (-2)/(1+x^2) for all ...

    Text Solution

    |

  6. f(n)(x)=e^(f(n-1)(x))" for all "n in N and f(0)(x)=x," then "(d)/(dx){...

    Text Solution

    |

  7. Suppose f and g are functions having second derivatives f' and g' ever...

    Text Solution

    |

  8. If y=e^(-x) cos x and yn+kny=0 where yn=(d^ny)/(dx^n) and kn are const...

    Text Solution

    |

  9. If a function is represented parametrically be the equations x=(1+(lo...

    Text Solution

    |

  10. If y=(x^2)/2+1/2xsqrt(x^2+1)+1/2(log)esqrt(x+sqrt(x^2+1)) , prove that...

    Text Solution

    |

  11. A curve parametrically given by x=t+t^(3)" and "y=t^(2)," where "t in ...

    Text Solution

    |

  12. "If "e^(sin(x^(2)+y^(2)))=tan""(y^(2))/(4)+sin^(-1)x," then y'(0) can ...

    Text Solution

    |

  13. If g is the inverse of a function f and f^'(x)=1/(1+x^5) then g^'(x) i...

    Text Solution

    |

  14. If for x (0,1/4), the derivative of tan^(-1)((6xsqrt(x))/(1-9x^3)) is ...

    Text Solution

    |

  15. Let f(x)=xsinpix ,x > 0. Then for all natural numbers n ,f^(prime)(x) ...

    Text Solution

    |

  16. Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x ...

    Text Solution

    |

  17. Let f:R to R and h:R to R be differentiable functions such that f(x)=x...

    Text Solution

    |

  18. If y=e^(sqrt(x))+e^(-sqrt(x))," then "(dy)/(dx) is equal to

    Text Solution

    |

  19. Let y=sqrt(x+sqrt(x+sqrt(x+...oo)))," then "(dy)/(dx) is equal to

    Text Solution

    |

  20. If f(x-y), f(x) f(y), and f(x+y) are in A.P. for all x, y, and f(0) ne...

    Text Solution

    |