Home
Class 12
MATHS
If a function is represented parametrica...

If a function is represented parametrically be the equations `x=(1+(log)_e t)/(t^2); y=(3+2(log)_e t)/t ,` then which of the following statements are true? `y^(x-2x y^(prime))=y` `y y^(prime)=2x(y^(prime))^2+1` `x y^(prime)=2y(y^(prime))^2+2` `y^(y-4x y^(prime))=(y^(prime))^2`

A

`y''(x-2xy')=y`

B

`yy'=2x(y')^(2)+1`

C

`xy'=2y(y')^(2)+2`

D

`y''(y-4xy')=(y')^(2)`

Text Solution

AI Generated Solution

To solve the problem, we need to differentiate the parametric equations given and check which of the statements are true. The equations are: 1. \( x = \frac{1 + \log_e t}{t^2} \) 2. \( y = \frac{3 + 2 \log_e t}{t} \) ### Step 1: Differentiate \( x \) with respect to \( t \) Using the quotient rule, which states that if \( u \) and \( v \) are functions of \( t \), then: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|24 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Matrix Match Type|6 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Execrises|137 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x^2+y^2=1,t h e n (a) y y^('')-2(y^(prime))^2+1=0 (b) yy^('')+(y^(prime))^2+1=0 (c) y y^('')+(y^(prime))^(-2)-1=0 (d) y y^('')+2(y^(prime))^2+1=0

Solve each of the following initial value problem: y^(prime)+y=e^x ,\ y(0)=1/2

The solution of the differential equation y^(prime)y^(primeprimeprime)=3(y^(primeprime))^2 is

The condition that one of the straight lines given by the equation a x^2+2h x y+b y^2=0 may coincide with one of those given by the equation a^(prime)x^2+2h^(prime)x y+b^(prime)y^2=0 is (a b^(prime)-a^(prime)b)^2=4(h a^(prime)-h^(prime)a)(b h^(prime)-b^(prime)h) (a b^(prime)-a^(prime)b)^2=(h a^(prime)-h^(prime)a)(b h^(prime)-b^(prime)h) (h a^(prime)-h^(prime)a)^2=4(a b^(prime)-a^(prime)b)(b h^(prime)-b^(prime)h) (b h^(prime)-b^(prime)h)^2=4(a b^(prime)-a^(prime)b)(h a^(prime)-h^(prime)a)

The condition that one of the straight lines given by the equation a x^2+2h x y+b y^2=0 may coincide with one of those given by the equation a^(prime)x^2+2h^(prime)x y+b^(prime)y^2=0 is (a b^(prime)-a^(prime)b)^2=4(h a^(prime)-h^(prime)a)(b h^(prime)-b^(prime)h) (a b^(prime)-a^(prime)b)^2=(h a^(prime)-h^(prime)a)(b h^(prime)-b^(prime)h) (h a^(prime)-h^(prime)a)^2=4(a b^(prime)-a^(prime)b)(b h^(prime)-b^(prime)h) (b h^(prime)-b^(prime)h)^2=4(a b^(prime)-a^(prime)b)(h a^(prime)-h^(prime)a)

If the circle x^2+y^2+2gx+2fy+c=0 bisects the circumference of the circle x^2+y^2+2g^(prime)x+2f^(prime)y+c^(prime)=0 then prove that 2g^(prime)(g-g^(prime))+2f^(prime)(f-f^(prime))=c-c '

If the circle x^2+y^2+2gx+2fy+c=0 bisects the circumference of the circle x^2+y^2+2g^(prime)x+2f^(prime)y+c^(prime)=0 then prove that 2g^(prime)(g-g^(prime))+2f^(prime)(f-f^(prime))=c-c '

Solve the initial value problem y^(prime)=ycot2x ,y(pi/4)=2.

If y = f(x) defined parametrically by x = 2t - |t - 1| and y = 2t^(2) + t|t| , then

Consider the family of all circles whose centers lie on the straight line y=x . If this family of circles is represented by the differential equation P y^+Q y^(prime)+1=0, where P ,Q are functions of x , y and y^(prime)(h e r ey^(prime)=(dy)/(dx),y^=(d^2y)/(dx^2)), then which of the following statements is (are) true? (a) ( b ) (c) P=y+x (d) (e) (b) ( f ) (g) P=y-x (h) (i) (c) ( d ) (e) P+Q=1-x+y+y +( f ) (g)(( h ) (i) y^(( j )prime( k ))( l ) ( m ))^(( n )2( o ))( p ) (q) (r) (s) ( t ) (u) P-Q=x+y-y -( v ) (w)(( x ) (y) y^(( z )prime( a a ))( b b ) ( c c ))^(( d d )2( e e ))( f f ) (gg) (hh)

CENGAGE ENGLISH-DIFFERENTIATION-Multiple Correct Answers Type
  1. f(n)(x)=e^(f(n-1)(x))" for all "n in N and f(0)(x)=x," then "(d)/(dx){...

    Text Solution

    |

  2. Suppose f and g are functions having second derivatives f' and g' ever...

    Text Solution

    |

  3. If y=e^(-x) cos x and yn+kny=0 where yn=(d^ny)/(dx^n) and kn are const...

    Text Solution

    |

  4. If a function is represented parametrically be the equations x=(1+(lo...

    Text Solution

    |

  5. If y=(x^2)/2+1/2xsqrt(x^2+1)+1/2(log)esqrt(x+sqrt(x^2+1)) , prove that...

    Text Solution

    |

  6. A curve parametrically given by x=t+t^(3)" and "y=t^(2)," where "t in ...

    Text Solution

    |

  7. "If "e^(sin(x^(2)+y^(2)))=tan""(y^(2))/(4)+sin^(-1)x," then y'(0) can ...

    Text Solution

    |

  8. If g is the inverse of a function f and f^'(x)=1/(1+x^5) then g^'(x) i...

    Text Solution

    |

  9. If for x (0,1/4), the derivative of tan^(-1)((6xsqrt(x))/(1-9x^3)) is ...

    Text Solution

    |

  10. Let f(x)=xsinpix ,x > 0. Then for all natural numbers n ,f^(prime)(x) ...

    Text Solution

    |

  11. Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x ...

    Text Solution

    |

  12. Let f:R to R and h:R to R be differentiable functions such that f(x)=x...

    Text Solution

    |

  13. If y=e^(sqrt(x))+e^(-sqrt(x))," then "(dy)/(dx) is equal to

    Text Solution

    |

  14. Let y=sqrt(x+sqrt(x+sqrt(x+...oo)))," then "(dy)/(dx) is equal to

    Text Solution

    |

  15. If f(x-y), f(x) f(y), and f(x+y) are in A.P. for all x, y, and f(0) ne...

    Text Solution

    |

  16. If a function is represented parametrically by the equations x=(1+log(...

    Text Solution

    |

  17. "If "y=(x^(2))/(2)+(1)/(2)xsqrt(x^(2)+1)+log(e)sqrt(x+sqrt(x^(2)+1)), ...

    Text Solution

    |

  18. A curve parametrically given by x=t+t^(3)" and "y=t^(2)," where "t in ...

    Text Solution

    |

  19. Let f(x)=xsinpix ,x > 0. Then for all natural numbers n ,f^(prime)(x) ...

    Text Solution

    |

  20. Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x ...

    Text Solution

    |