Home
Class 12
MATHS
f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(...

`f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x).`
The value of g(0) is

A

0

B

-3

C

2

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( g(0) \) given the functions \( f(x) \) and \( g(x) \). ### Step 1: Define the functions We have: \[ f(x) = x^2 + x g'(1) + g''(2) \] \[ g(x) = f(1)x^2 + x f'(x) + f''(x) \] ### Step 2: Substitute values for \( g'(1) \) and \( g''(2) \) Let: \[ g'(1) = a \quad \text{and} \quad g''(2) = b \] Thus, we can rewrite \( f(x) \) as: \[ f(x) = x^2 + ax + b \] ### Step 3: Calculate \( f'(x) \) and \( f''(x) \) Now, we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}(x^2 + ax + b) = 2x + a \] \[ f''(x) = \frac{d^2}{dx^2}(x^2 + ax + b) = 2 \] ### Step 4: Calculate \( f(1) \) Next, we find \( f(1) \): \[ f(1) = 1^2 + a \cdot 1 + b = 1 + a + b \] ### Step 5: Substitute into \( g(x) \) Now we substitute \( f(1) \), \( f'(x) \), and \( f''(x) \) into \( g(x) \): \[ g(x) = (1 + a + b)x^2 + x(2x + a) + 2 \] Expanding this gives: \[ g(x) = (1 + a + b)x^2 + (2x^2 + ax) + 2 \] Combining like terms: \[ g(x) = (1 + a + b + 2)x^2 + ax + 2 \] \[ g(x) = (3 + a + b)x^2 + ax + 2 \] ### Step 6: Find \( g(0) \) To find \( g(0) \): \[ g(0) = (3 + a + b) \cdot 0^2 + a \cdot 0 + 2 = 2 \] ### Conclusion Thus, the value of \( g(0) \) is: \[ \boxed{2} \]

To solve the problem, we need to find the value of \( g(0) \) given the functions \( f(x) \) and \( g(x) \). ### Step 1: Define the functions We have: \[ f(x) = x^2 + x g'(1) + g''(2) \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Matrix Match Type|6 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Numerical Value Type|45 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|29 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The value of f(3) is

Let f (x) and g (x) be two differentiable functions, defined as: f (x)=x ^(2) +xg'(1)+g'' (2) and g (x)= f (1) x^(2) +x f' (x)+ f''(x). The value of f (1) +g (-1) is:

Let f (x) and g (x) be two differentiable functions, defined as: f (x)=x ^(2) +xg'(1)+g'' (2) and g (x)= f(1)x^(2) +x f' (x)+ f''(x). The number of integers in the domain of the function F(x)= sqrt(-(f(x))/(g (x)))+sqrt(3-x) is:

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The domain of the function sqrt((f(x))/(g(x))) is

Let f(x)=x^2+xg^2(1)+g^''(2) and g(x)=f(1).x^2+xf'(x)+f''(x), then find f(x) and g(x).

If f(x)=2x^(2)-4 and g(x)=2^(x) , the value of g(f(1)) is

If function f(x)=x^(2)+e^(x//2) " and " g(x)=f^(-1)(x) , then the value of g'(1) is

Let f(x)=3x^(2)+4xg'(1)+g''(2) and, g(x)=2x^(2)+3xf'(2)+f''(3)" for all "x in R. Then,

If the function f(x)=x^3+e^(x/2) and g(x)=f ^(−1)(x) , then the value of g ′ (1) is

If f(x)=|x-2|+x^(2)-1 and g(x)+f(x)=x^(2)+3 , find the maximum value of g(x) .

CENGAGE ENGLISH-DIFFERENTIATION-Linked Comprehension Type
  1. f:RrarrR,f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3)" for all "x in R. f(x...

    Text Solution

    |

  2. f:RrarrR,f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3)" for all "x in R. The...

    Text Solution

    |

  3. Repeated roots : If equation f(x) = 0, where f(x) is a polyno- mial fu...

    Text Solution

    |

  4. Repeated roots : If equation f(x) = 0, where f(x) is a polyno- mial fu...

    Text Solution

    |

  5. Repeated roots : If equation f(x) = 0, where f(x) is a polyno- mial fu...

    Text Solution

    |

  6. Equation x^(n)-1=0, ngt1, n in N," has roots "1,a(1),a(2),…,a(n-1). ...

    Text Solution

    |

  7. Equation x^(n)-1=0,ngt1,ninN, has roots 1,a(1),a(2),...,a(n),. The val...

    Text Solution

    |

  8. Equation x^(n)-1=0, ngt1, n in N," has roots "1,a(1),a(2),…,a(n-1). ...

    Text Solution

    |

  9. f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The value o...

    Text Solution

    |

  10. f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The value o...

    Text Solution

    |

  11. f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The domain ...

    Text Solution

    |

  12. g(x+y)=g(x)+g(y)+3xy(x+y)AA x, y in R" and "g'(0)=-4. Number of real...

    Text Solution

    |

  13. g(x+y)=g(x)+g(y)+3xy(x+y)AA x, y in R" and "g'(0)=-4. For which of t...

    Text Solution

    |

  14. g(x+y)=g(x)+g(y)+3xy(x+y)AA x, y in R" and "g'(0)=-4. The value of g...

    Text Solution

    |

  15. A curve is represented parametrically by the equations x=f(t)=a^(In(b^...

    Text Solution

    |

  16. A curve is represented parametrically by the equations x=f(t)=a^(In(b^...

    Text Solution

    |

  17. A curve is represented parametrically by the equations x=f(t)=a^(In(b'...

    Text Solution

    |

  18. Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(...

    Text Solution

    |

  19. Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(...

    Text Solution

    |

  20. If roots of an equation x^n-1=0a r e1,a1,2, a(n-1), then the value of...

    Text Solution

    |