Home
Class 12
MATHS
If the tangent at (1,7) to curve x^(2)=y...

If the tangent at (1,7) to curve `x^(2)=y-6` touches the circle `x^(2)+y^(2)+16x+12y+c=0` then the value of c is

A

95

B

195

C

185

D

85

Text Solution

Verified by Experts

The correct Answer is:
A

1 Differentiating curve `x^(2)=y-6` w.r.t. x, we get
`(dy)/(dx)=2x`
Therefore, slope of tangent to the curve at point P(1,7) is
`((dy)/(dx))_((1","7))=2`
Equation of tangent to the curve at point P is
y-7=2(x-1)
`or2x-y+5=0` (1)
Given circle is `x^(2)+y^(2)+16x+12y+c=0`
Center of the circle is C(-8,-6).
Radius of the circle, `r=sqrt(46+36-c)`
Line (!) touches the circle at point M.
So, CM = r
`(|-16+65|)/(sqrt(2^(2)+(-1)^(2)))=sqrt(64+36-c)`
`:." "sqrt(100-c)=sqrt(5)`
`:." "c=95`
Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    CENGAGE ENGLISH|Exercise JEE ADVENCED SINGLE CORRECT ANSWER TYPE|2 Videos
  • PARABOLA

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|7 Videos
  • PARABOLA

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE TYPE|32 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE ENGLISH|Exercise Numberical Value Type|5 Videos
  • PERMUTATION AND COMBINATION

    CENGAGE ENGLISH|Exercise Comprehension|8 Videos

Similar Questions

Explore conceptually related problems

Show that the tangent at (-1, 2) of the circle x^(2) + y^(2) - 4x -8y + 7 = 0 touches the circle x^(2) + y^(2) + 4x + 6y = 0 and also find its point of contact.

If the line y=sqrt(3)x+k touches the circle x^2+y^2=16 , then find the value of kdot

If the line y=sqrt(3)x+k touches the circle x^2+y^2=16 , then find the value of kdot

Show that the line 5x + 12y - 4 = 0 touches the circle x^(2)+ y^(2) -6x + 4y + 12 = 0

If the line y=2x+c is a tangent to the circle x^(2)+y^(2)=5 then a value of c is

If the chord of contact of tangents from a point (x_1, y_1) to the circle x^2 + y^2 = a^2 touches the circle (x-a)^2 + y^2 = a^2 , then the locus of (x_1, y_1) is

Tangent to the curve y=x^2+6 at a point (1,7) touches the circle x^2+y^2+16x+12y+c=0 at a point Q , then the coordinates of Q are (A) (-6,-11) (B) (-9,-13) (C) (-10,-15) (D) (-6,-7)

The value of k so that x+3y+k=0 touches the circle x^(2)+y^(2)+6x+2y=0 is

If 3x+4y+k=0 represents the equation of tangent at the vertex of the parabola 16x^(2)-24xy+9y^2+14x+2y+7=0 , then the value of k is ________ .