Home
Class 12
MATHS
If veca, vecb and vecc are vectors such ...

If `veca, vecb and vecc` are vectors such that `|veca|=3,|vecb|=4 and |vecc|=5 and (veca+vecb)` is perpendicular to `vecc,(vecb+vecc)` is perpendicular to `veca` and `(vecc+veca)` is perpendicular to `vecb` then `|veca+vecb+vecc|=` (A) `4sqrt(3)` (B) `5sqrt(2)` (C) 2 (D) 12

Text Solution

AI Generated Solution

To solve the problem, we need to find the magnitude of the vector sum \( \vec{a} + \vec{b} + \vec{c} \) given the conditions about their magnitudes and the perpendicular relationships. Let's break it down step by step. ### Step 1: Understand the given information We have three vectors: - \( |\vec{a}| = 3 \) - \( |\vec{b}| = 4 \) - \( |\vec{c}| = 5 \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca,vecb, vecc are three vectors such that |veca |= 5, |vecb| = 12 and | vecc|=13 and veca+vecb+vecc=0 then veca.vecb+vecb.vecc+vecc.veca is equal to

Given vec(a) is perpendicular to vecb+vecc , vecb is perpendicular to vecc+veca and vecc is perpendicular to veca+vecb . If |veca|=1, |vecb|=2, |vecc|=3 , find |veca+vecb+vecc|

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

If veca,vecbandvecc are three vectors such that veca+vecb+vecc=0and|veca|=2,|vecb|=3and|vecc|=5 , then the value of veca.vecb+vecb.vecc+vecc.veca is

The vector (veca.vecb)vecc-(veca.vecc)vecb is perpendicular to

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|