Home
Class 12
MATHS
Vector vec O A= hat i+2 hat j+2 hat k t...

Vector ` vec O A= hat i+2 hat j+2 hat k` turns through a right angle passing through the positive x-axis on the way. Show that the vector in its new position is `(4 hat i- hat j- hat k)/(sqrt(2))dot`

Text Solution

Verified by Experts

Let the new vector be `vec(OB)= xhati+yhatj=zhatk`
According to the given condition, we have
`|vec(OB)|=|vec(OA)|=3 Rightarrowx^(2)+y^(2)+z^(2)=9`
`vec(OA)vec(OB)Rightarrowx+2y+2z=0`
Since with turing `vec(OA)`, it passes through the postivie x-axis on the way, vectors `vec(OA),vec(OB)and lambdahati` coplanar . thus,
`|{:(x,y,z),(1,2,2),(lambda,0,0):}|=0`
or y-z=0
solving (i) (ii) and (iii) for x,y and z. we have x-4y=-4z
`Rightarrow 16y^(2)+y^(2)+y^(2)=9`
`Rightarrowy=+-1/sqrt2`
`Rightarrow vec(OB) = +-(4/sqrt2hati-1/sqrt2hatj-1/sqrt2hatk)`
since angle between `vec(OB) and hati` is acute, `vec(OB)=4/sqrt2hati-1/sqrt2hatj-1/sqrt2hatk`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

Find the image of the point having position vector hat i+2 hat j+4 hat k in the plane vec r.(2 hat i- hat j+ hat k)+3=0.

Find the vector equation of the plane passing through the points having position vectors hat i+ hat j-2 hat k ,2 i - hat j+ hat ka n d hat i+2 hat j+ hat kdot

Find the angle between the vectors vec a= hat i+hat j-hat k and vec b=hat i-hat j+hat k

Find the magnitude of vector vec a=(3 hat k+4 hat j)xx( hat i+ hat j- hat k)dot

Position vector hat k is rotated about the origin by angle 135^0 in such a way that the plane made by it bisects the angel between hat ia n d hatjdot Then its new position is +-( hat i)/(sqrt(2))+-( hat j)/(sqrt(2)) b. +-( hat i)/2+-( hat j)/2-( hat k)/(sqrt(2)) c. ( hat i)/(sqrt(2))-( hat k)/(sqrt(2)) d. none of these

Find the vector equation of a plane passing through a point having position vector 2 hat i- hat j+ hat k and perpendicular to the vector 4 hat i+2 hat j-3 hat kdot

Find the equation of the line in vector and in cartesian form that passes through the point with position vector 2 hat i- hat j+4 hat k and is in the direction hat i+2 hat j- hat k .

The position vector of the points P and Q are 5 hat i+7 hat j-2 hat k and -3 hat i+3 hat j+6 hat k , respectively. Vector vec A=3 hat i- hat j+ hat k passes through point P and vector vec B=-3 hat i+2 hat j+4 hat k passes through point Q . A third vector 2 hat i+7 hat j-5 hat k intersects vectors A and Bdot Find the position vectors of points of intersection.

The position vectors of the points Pa n dQ with respect to the origin O are vec a= hat i+3 hat j-2 hat k and vec b=3 hat i- hat j-2 hat k , respectively. If M is a point on P Q , such that O M is the bisector of angleP O Q , then vec O M is a. 2( hat i- hat j+ hat k) b. 2 hat i+ hat j-2 hat k c. 2(- hat i+ hat j- hat k) d. 2( hat i+ hat j+ hat k)

Find the projection of the vector vec a=2 hat i+3 hat j+2 hat k on the vector vec b=2 hat i+2 hat j+ hat k .