Home
Class 12
MATHS
Prove that (veca-vecb)xx(veca+vecb)=2(ve...

Prove that `(veca-vecb)xx(veca+vecb)=2(vecaxxvecb)` also interpret this result.

Text Solution

Verified by Experts

`(veca-vecb)xx(veca+vecb)=(veca-vecb) xxveca+(veca-vecb)xxvecb` [ By distributivity of vector product over addition]
`= vecaxxveca-vecbexxveca+vecaxxvecb-vecbxxvecb` [ Again , by distributivity of vector product over addition ]
`=vec0 +vecaxxvecb+vecaxxvecb-vec0`
`= 2vecaxxvecb`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

Prove that: (2veca-vecb)xx (veca+2vecb)=5vecaxxvecb .

Prove that: |(veca+vecb)xx(veca-vecb)|=2ab if veca_|_vecb

Show that (veca-vecb)xx(veca+vecb)=2vecaxx vecb and give a genometrical interpretation of it.

Show that (veca-vecb)xx(veca+vecb)=2vecaxx vecb and give a geometrical interpretation of it.

Prove that (veca+3vecb)xx(veca+vecb)+(3veca-5vecb)xx(veca-vecb)=0

Prove that veca*(vecb+vec c)xx (veca+3vecb+2vec c)=-(veca vecb vecc )

Prove that : veca*(vecb+vec c)xx(veca+2vecb+3vec c)=[veca vecb vec c]

Prove that (veca+ vecb)*( veca+ vecb)=|veca|^2+| vecb|^2 , if and only if veca , vecb are perpendicular, given veca!= vec0, vecb!= vec0

Evaluate the expression (veca-vecb)xx(veca+vecb)=

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)