Home
Class 12
MATHS
If |veca|=2 then find the value of |vec...

If ` |veca|=2` then find the value of `|vecaxxveci|^(2)+|vecaxxvecj|^(2)+|vecaxxveck|^2`

Text Solution

AI Generated Solution

To solve the problem, we need to find the value of \( |\vec{a} \times \vec{i}|^2 + |\vec{a} \times \vec{j}|^2 + |\vec{a} \times \vec{k}|^2 \) given that \( |\vec{a}| = 2 \). ### Step-by-Step Solution: 1. **Understanding the Cross Product**: The cross product of two vectors \(\vec{a}\) and \(\vec{b}\) can be calculated using the determinant of a matrix formed by the unit vectors and the components of the vectors. For \(\vec{a} = (a_1, a_2, a_3)\), the cross products with the unit vectors \(\vec{i}, \vec{j}, \vec{k}\) will yield vectors perpendicular to \(\vec{a}\). 2. **Calculate \(|\vec{a} \times \vec{i}|^2\)**: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are non-zero, non parallel vectors, then the value of |veca + vecb+veca xx vecb|^(2) +|veca + vecb-veca xx vecb|^(2) equals

If [ veca vecbvecc]=2 , then find the value of [(veca+2vecb-vecc) (veca - vecb) (veca - vecb-vecc)]

Let veca and vecb be unit vectors such that |veca+vecb|=sqrt3 . Then find the value of (2veca+5vecb).(3veca+vecb+vecaxxvecb)

If veca and vecb are vectors in space given by veca= (hati-2hatj)/sqrt5and vecb= (2hati + hatj + 3hatk)/sqrt14 then find the value of (2veca + vecb) . [(vecaxxvecb) xx (veca- 2vecb)]

If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca] xx vecb .

The value of the expression |vecaxxvecb|^(2)+(veca.vecb)^(2) is….. .

If veca and vecb are any two vectors , then prove that |vecaxxvecb|^(2)=|veca|^(2)|vecb|^(2)-(veca.vecb)^(2)=|{:(veca.veca,veca.vecb),(veca.vecb,vecb.vecb):}| or |vecaxxvecb|^(2)+(veca.vecb)^(2)=|veca|^(2)|vecb|^(2) (This is also known as Lagrange identily)

Let veca and vecb are unit vectors such that |veca+vecb|=(3)/(2) , then the value of (2veca+7vecb).(4veca+3vecb+2020vecaxxvecb) is equal to

If veca = 2veci+3vecj-veck, vecb =-veci+2vecj-4veck and vecc=veci + vecj + veck , then find the value of (veca xx vecb).(vecaxxvecc)

If veca = 2vecj+3vecj-veck, vecb =-veci+2vecj-4veck and vecc=veci + vecj + veck , then find the value of (veca xx vecb).(vecaxxvecc)