Home
Class 12
MATHS
vecrxxveca=vecbxxveca,vecrxxvecb=vecaxxv...

`vecrxxveca=vecbxxveca,vecrxxvecb=vecaxxvecb,vecanevec0,vecbnevec0,vecanelambdavecb and veca` is not perpendicular to `vecb`, then find `vecr` in terms of `veca and vecb`.

Text Solution

AI Generated Solution

To solve the problem, we need to find the vector \(\vec{r}\) in terms of vectors \(\vec{a}\) and \(\vec{b}\) given the conditions provided. Let's break this down step by step. ### Step 1: Set Up the Given Equations We start with the equations given in the problem: 1. \(\vec{r} \times \vec{a} = \vec{b} \times \vec{a}\) 2. \(\vec{r} \times \vec{b} = \vec{a} \times \vec{b}\) ### Step 2: Rearranging the First Equation ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

If vecA + vecB = vecR and 2vecA + vecB s perpendicular to vecB then

Solve the vector equation vecr xx vecb = veca xx vecb, vecr.vecc = 0 provided that vecc is not perpendicular to vecb

If vecr.veca=0, vecr.vecb=1and [vecr vecavecb]=1,veca.vecbne0,(veca.vecb)^(2)-|veca|^(2)|vecb|^(2)=1, then find vecr in terms of veca and vecb .

If |veca+vecb|=|veca-vecb|, (veca,vecb!=vec0) show that the vectors veca and vecb are perpendicular to each other.

If vecaxx(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , then [(veca,vecb,vecc)]=

If vecp=(vecbxxvecc)/([(veca,vecb,vecc)]),vecq=(veccxxveca)/([(veca,vecb,vecc)]),vecr=(vecaxxvecb)/([(veca,vecb,vecb)]) where veca,vecb,vecc are three non-coplanar vectors, then the value of the expression (veca+vecb+vecc).(vecp+vecq+vecr) is

If veca.vecb=0 and vecaxxvecb=0 prove that veca=vec0 or vecb=vec0 .

If vecP = (vecbxxvecc)/([vecavecbvecc]).vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecq+ vecq+vecr) is

Prove that: (2veca-vecb)xx (veca+2vecb)=5vecaxxvecb .

If vecp = (vecbxxvecc)/([vecavecbvecc]), vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecp+ vecq+vecr) is (a)3 (b)2 (c)1 (d)0