Home
Class 12
MATHS
A , B , Ca n dD are any four points in t...

`A , B , Ca n dD` are any four points in the space, then prove that `| vec A Bxx vec C D+ vec B Cxx vec A D+ vec C Axx vec B D|=4` (area of ` A B C` .)

Text Solution

AI Generated Solution

To prove that \( | \vec{AB} \times \vec{CD} + \vec{BC} \times \vec{AD} + \vec{CA} \times \vec{BD}| = 4 \times \text{Area of } \triangle ABC \), we will follow these steps: ### Step 1: Define the vectors Let the points \( A, B, C, D \) be represented as vectors: - \( \vec{A} = \vec{a} \) - \( \vec{B} = \vec{b} \) - \( \vec{C} = \vec{c} \) - \( \vec{D} = \vec{d} \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

If A ,B ,C ,D be any four points in space, prove that | vec A Bxx vec C D+ vec B Cxx vec A D+ vec C Axx vec B D|=4 (Area of triangle ABC)

A , B , C , D are any four points, prove that vec A Bdot vec C D+ vec B Cdot vec A D+ vec C Adot vec B D=4(Area \ of triangle ABC).

A , B , C , D are any four points, prove that vec A Bdot vec C D+ vec B Cdot vec A D+ vec C Adot vec B D=0.

A B C D E is pentagon, prove that vec A B+ vec A E+ vec B C+ vec D C+ vec E D+ vec A C=3 vec A C

A,B,C,D are four points in the space and satisfy | vec A B|=3,| vec B C|=7,| vec C D|=11&| vec D A|=9 , then value of vec (AC). vec(BD) .

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

Prove that [ vec a , vec b , vec c+ vec d]=[ vec a , vec b , vec c]+[ vec a , vec b , vec d]

If veca , vec b , vec c are three vectors such that veca+ vec b+ vec c= vec0 , then prove that vec axx vec b= vec bxx vec c= vec cxx vec a

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

Let vec a , vec b ,a n d vec c be non-coplanar vectors and let the equation vec a^' , vec b^' , vec c ' are reciprocal system of vector vec a , vec b , vec c , then prove that vec axx vec a^'+ vec bxx vec b^'+ vec cxx vec c ' is a null vector.