Home
Class 12
MATHS
The postion vectors of the vertrices fo ...

The postion vectors of the vertrices fo aquadrilateral with A as origian are `B(vecb),D(vecd) and C (l vecb+m vecd)` . Prove that the area of the quadrilateral is `1/2(l+m)|vecb xx vecd|`.

Text Solution

AI Generated Solution

To prove that the area of the quadrilateral formed by the position vectors of the vertices A (origin), B (vector b), D (vector d), and C (l vector b + m vector d) is given by \( \frac{1}{2}(l+m)|\vec{b} \times \vec{d}| \), we can follow these steps: ### Step 1: Identify the position vectors Let the position vectors of the points be: - \( \vec{A} = \vec{0} \) (origin) - \( \vec{B} = \vec{b} \) - \( \vec{D} = \vec{d} \) - \( \vec{C} = l\vec{b} + m\vec{d} \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

The position vectors of the vertices A, B and C of a triangle are three unit vectors veca, vecb and vecc respectively. A vector vecd is such that vecd.hata =vecd. Hatb=vecd.hatc and vecd= lambda (hatb + hatc) . Then triangle ABC is

The position vectors of the vertices A, B and C of a triangle are three unit vectors veca, vecb and vecc respectively. A vector vecd is such that vecd.hata =vecd. hatb=vecd.hatc and vecd= lambda (hatb + hatc) . Then triangle ABC is

If veca,vecb,vecc and vecd are the position vectors of the vertices of a cycle quadrilateral ABCD, prove that (|vecaxxvecb+vecb xxvecd+vecd xxveca|)/((vecb-veca).(vecd-veca))+(|vecbxxvecc+veccxxvecd+vecd+vecd xx vecb|)/((vecb-vecc).(vecd-vecc))

If veca,vecb,vec c,vecd are the position vectors of the verticles of a cyclic quadrilateral ABCd prove that (|vecaxxvecb+vecbxxvecd+vecd xxveca|)/((vecb-veca).(vecd-veca))+(|vecbxxvec c+veccxxvecd+vecd xxvecb|)/((vecb-vecc).(vecd-vecc))=0

Given vecC = vecA xx vecB and vecD = vecB xx vecA . What is the angle between vecC and vecD ?

If vecA xx vecB = vecC+ vecD , them select the correct alternative:

Prove that the perpendiculasr distanceof as point with position vector veca from the plane thorugh three points with position vectors vecb,vecc, vecd is ([veca vecc vecd]+[veca vecd vecb]+[veca vecb vecc]-[vecb vecc vecd])/(|vecbxxvecc+veccxxvecd+vecdxvecb|)

If (veca xx vecb) xx (vecc xx vecd) . (veca xx vecd) =0 then which of the following may be true ?

If veca,vecb,vecc,vecd be the position vectors of points A,B,C,D respectively and vecb-veca=2(vecd-vecc) show that the pointf intersection of the straighat lines AD and BC divides these line segments in the ratio 2:1.

Let the pair of vector veca,vecb and vecc,vecd each determine a plane. Then the planes are parallel if