Home
Class 12
MATHS
Let veca and vecb be unit vectors such t...

Let `veca and vecb` be unit vectors such that `|veca+vecb|=sqrt3`. Then find the value of `(2veca+5vecb).(3veca+vecb+vecaxxvecb)`

Text Solution

AI Generated Solution

To solve the problem step by step, we start with the given information and proceed to find the required value. ### Step 1: Understand the given information We have two unit vectors \(\vec{a}\) and \(\vec{b}\) such that: \[ |\vec{a} + \vec{b}| = \sqrt{3} \] Since \(\vec{a}\) and \(\vec{b}\) are unit vectors, we know that: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

Let veca and vecb are unit vectors such that |veca+vecb|=(3)/(2) , then the value of (2veca+7vecb).(4veca+3vecb+2020vecaxxvecb) is equal to

If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca] xx vecb .

if veca and vecb are unit vectors such that veca. vecb = cos theta , then the value of | veca + vecb| , is

If veca and vecb are two non collinear unit vectors and |veca+vecb|=sqrt(3) then find the value of (veca-vecb).(2veca+vecb)

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

Evaluate: (3veca-5vecb).(2veca+7vecb)

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If |veca|=|vecb|=|veca+vecb|=1 then find the value of |veca-vecb|

If veca,vecb and vecc are unit vectors such that veca+vecb+vecc=vec0 then the value of veca.vecb+vecb.vecc+vecc.veca is a) 1 b) 0 c) 3 d) -3/2