Home
Class 12
MATHS
Show that : [vecl vecm vecn] [veca vecb ...

Show that : `[vecl vecm vecn] [veca vecb vecc]=|(vecl.veca, vecl.vecb, vecl.vecc),(vecm.veca, vecm.vecb, vecm.vecc),(vecn.veca, vecn.vecb, vecn.vecc)|`

Text Solution

AI Generated Solution

To show that \([ \vec{l} \vec{m} \vec{n} ] [ \vec{a} \vec{b} \vec{c} ] = |( \vec{l} \cdot \vec{a}, \vec{l} \cdot \vec{b}, \vec{l} \cdot \vec{c} ), ( \vec{m} \cdot \vec{a}, \vec{m} \cdot \vec{b}, \vec{m} \cdot \vec{c} ), ( \vec{n} \cdot \vec{a}, \vec{n} \cdot \vec{b}, \vec{n} \cdot \vec{c} )|\), we will follow these steps: ### Step 1: Define the vectors Let: - \(\vec{l} = l_1 \hat{i} + l_2 \hat{j} + l_3 \hat{k}\) - \(\vec{m} = m_1 \hat{i} + m_2 \hat{j} + m_3 \hat{k}\) - \(\vec{n} = n_1 \hat{i} + n_2 \hat{j} + n_3 \hat{k}\) - \(\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}\) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

Show that [veca vecb vecc]\^2=|(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc)|

If vecl,vecm,vecn are three non coplanar vectors prove that [vecl vecm vecn](vecaxxvecb) =|(vec1.veca, vec1.vecb, vec1),(vecm.veca, vecm.vecb, vecm),(vecn.veca, vecn.vecb, vecn)|

If vecl,vecm,vecn are three non coplanar vectors prove that [vec vecm vecn](vecaxxvecb) =|(vec1.veca, vec1.vecb, vec1),(vecm.veca, vecm.vecb, vecm),(vecn.veca, vecn.vecb, vecn)|

If veca=hati+hatj+hatk,hatb=hati-hatj+hatk,vecc=hati+2hatj-hatk , then find the value of |{:(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc):}|

If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb.vecc,veca.vecc)| where veca, vecb,vecc are coplanar then:

If the vectors veca, vecb, and vecc are coplanar show that |(veca,vecb,vecc),(veca.veca, veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|=0

If veca, vecb, vecc are three given non-coplanar vectors and any arbitrary vector vecr in space, where Delta_(1)=|{:(vecr.veca,vecb.veca,vecc.veca),(vecr.vecb,vecb.vecb,vecc.vecb),(vecr.vecc,vecb.vecc,vecc.vecc):}|,Delta_(2)=|{:(veca.veca,vecr.veca,vecc.veca),(veca.vecb,vecr.vecb,vecc.vecb),(veca.vecc,vecr.vecc ,vecc.vecc):}| Delta_(3)=|{:(veca.veca,vecb.veca,vecr.veca),(veca.vecb,vecb.vecb,vecr.vecb),(veca.vecc,vecb.vecc,vecr.vecc):}|, Delta=|{:(veca.veca,vecb.veca,vecc.veca),(veca.vecb,vecb.vecb,vecc.vecb),(veca.vecc,vecb.vecc,vecc.vecc):}|, "then prove that " vecr=(Delta_(1))/Deltaveca+(Delta_(2))/Deltavecb+(Delta_(3))/Deltavecc

Prove that [veca+vecb,vecb+vecc,vecc+veca]=2[veca vecb vecc]

Prove that [ veca+ vecb , vecb+ vecc , vecc+ veca]=2[ veca , vecb , vecc] .

Prove that [veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]