Home
Class 12
MATHS
Let hat a , hat b ,and hat c be the no...

Let ` hat a , hat b` ,and `hat c` be the non-coplanar unit vectors. The angle between ` hat b` and `hat c` is `alpha` , between ` hat c` and ` hat a` is `beta` and between ` hat a` and `hat b` is `gamma` . If `A( hat a cosalpha, 0),B( hat bcosbeta, 0)` and `C( hat c cosgamma, 0),` then show that in triangle `AB C ,` `(|hat axx(hat bxx hat c)|)/(sinA)=(|hat bxx(hat cxx hat a)|)/(sinB)=(|hat cxx(hat axx hat b)|)/(sinC)`

Text Solution

Verified by Experts

From the sine rule, we get
`(AB)/(sin C)=(AC)/(sinB)=(BC)/(sinA)= ((AB)(BC)(CA))/(2DeltaABC)`
`BC=|vec(BC)|=|hatc cos gamma=-hatbcosbeta|=|(hata.hatb)hatc-(hatc.hata)hatb|=|(hataxx(hatbxxhatc))|`
`AC = |vec(AC)|=|hatbxx(hatcxxhata)|and AB = |vec(AB)|=hatcxx(hataxx hatb)|`
`DeltaABC=1/2|vec(BC)xxvec(BA)|`
`=1/2 |(hatc cosgamma-hatb cos beta)xx(hata cosalpha-hatbcosbeta)|`
`=1/2 |(hatc xxhata)cosalpha cosgamma+(hatbxxhatc)cosalphacosbeta+(hata xx hatb)cos beta cos alpha|`
`2DeltaABC=|sumhatn_(1)sinalphacosbeta cosgamma|`
`(|hataxx(hatbxxhatc)|)/sinA=(|hatbxx(hatcxxhata)|)/sinB=(|hatcxx(hataxxhatb)|)/sin C = (prod|hata xx(hatbxx hatc)|)/(|sum sinalpha cosbeta cosgamma hatn_(1)|)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

Let hat(u), hat(v) and hat(w) are three unit vectors, the angle between hat(u) and hat(v) is twice that of the angle between hat(u) and hat(w) and hat(v) and hat(w) , then [hat(u) hat(v) hat(w)] is equal to

If hat a , hat b ,a n d hat c are unit vectors, then | hat a+hat b|^2+| hat b- hat c|^2+| hat c- hat a|^2 does not exceed

Find the angle between the vectors vec a= hat i+hat j-hat k and vec b=hat i-hat j+hat k

Given unit vectors hat m , hat na n d hat p such that angel between hat ma n d hat n is alpha and angle between hat pa n d( hat mxx hat n) is also alpha,then[ hat n hat p hat m]=

Let hat a , hat b , hatc be unit vectors such that hat a * hatb =hat a *hatc =0 and the angle between hat b and hat c be (pi)/(6) prove that hat a =+- 2 (hatb xx hat c )

Find the angle between two vectors A= 2 hat i + hat j - hat k and B=hat i - hat k .

If hat a\ a n d\ hat b are unit vectors inclined at an angle theta then prove that tantheta/2=(| hat a- hat b|)/(| hat a+ hat b|)

If hat i ,\ hat j ,\ hat k\ are unit vectors, then hat idot hat j=1 b. hat idot hat i=1 c. hat ixx hat j=1 d. hat ixx( hat jxx hat k)=1

If hat a ,\ hat b are unit vector such that \ hat a+ hat b is a unit vectors, write the value of | hat a- hat b|dot

The value of hat i *( hat jxx hat k)+ hat j*( hat ixx hat k)+ hat k*( hat ixx hat j) is (A) 0 (B) 1 (C) 1 (D) 3