Home
Class 12
MATHS
vecrxxveca=vecbxxveca,vecrxxvecb=vecaxxv...

`vecrxxveca=vecbxxveca,vecrxxvecb=vecaxxvecb,vecanevec0,vecbnevec0,vecanelambdavecb and veca` is not perpendicular to `vecb`, then find `vecr` in terms of `veca and vecb`.

Text Solution

Verified by Experts

Writing `vecr` as a linear combination of `veca , vecb and veca xx vecb` . We have
`vecr=xveca+yvecb+z(vecaxxvecb)`
for scalars x,y and z
`0=vecr.veca=x|veca|^(2)+yveca.vecb " " ("taking dot product with "veca)1`
`1- vecr.vecb=xveca.vecb+y|vecb|^(2)" " ("taking dot product with"vecb)`
Solving , we get y `(|veca|^(2))/(|veca|^(2)|vecb|^(2)-(veca.vecb)^(2))=|veca|^(2)`
`and x=(veca.vecb)/((veca.vecb)^(2)-|veca|^(2)|vecb|^(2))=veca.vecb`
Also `1=[vecr vecavecb]=z|vecaxxvecb|^(2) " " ("taking dot product with "vecaxxvecb)`
`z=1/(|vecaxxvecb|^(2))`
`vecr=((veca.vecb)veca-|veca|^(2)vecb)+(vecaxxvecb)/(|vecaxxvecb|^(2))`
`=vecaxx(vecaxxvecb)+(vecaxxvecb)/(|vecaxxvecb|^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

If vecA + vecB = vecR and 2vecA + vecB s perpendicular to vecB then

Solve the vector equation vecr xx vecb = veca xx vecb, vecr.vecc = 0 provided that vecc is not perpendicular to vecb

If vecr.veca=0, vecr.vecb=1and [vecr vecavecb]=1,veca.vecbne0,(veca.vecb)^(2)-|veca|^(2)|vecb|^(2)=1, then find vecr in terms of veca and vecb .

If |veca+vecb|=|veca-vecb|, (veca,vecb!=vec0) show that the vectors veca and vecb are perpendicular to each other.

If vecaxx(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , then [(veca,vecb,vecc)]=

If vecp=(vecbxxvecc)/([(veca,vecb,vecc)]),vecq=(veccxxveca)/([(veca,vecb,vecc)]),vecr=(vecaxxvecb)/([(veca,vecb,vecb)]) where veca,vecb,vecc are three non-coplanar vectors, then the value of the expression (veca+vecb+vecc).(vecp+vecq+vecr) is

If veca.vecb=0 and vecaxxvecb=0 prove that veca=vec0 or vecb=vec0 .

If vecP = (vecbxxvecc)/([vecavecbvecc]).vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecq+ vecq+vecr) is

Prove that: (2veca-vecb)xx (veca+2vecb)=5vecaxxvecb .

If vecp = (vecbxxvecc)/([vecavecbvecc]), vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecp+ vecq+vecr) is (a)3 (b)2 (c)1 (d)0