Home
Class 12
MATHS
OABC is a tetrahedron where O is the ori...

OABC is a tetrahedron where O is the origin and A,B,C have position vectors `veca,vecb,vecc` respectively prove that circumcentre of tetrahedron OABC is `(a^2(vecbxxvecc)+b^2(veccxxveca)+c^2(vecaxxvecb))/(2[veca vecb vecc])`

Text Solution

AI Generated Solution

To prove that the circumcenter of the tetrahedron OABC is given by the formula \[ \vec{R} = \frac{a^2(\vec{b} \times \vec{c}) + b^2(\vec{c} \times \vec{a}) + c^2(\vec{a} \times \vec{b})}{2[\vec{a}, \vec{b}, \vec{c}]} \] where \( \vec{a}, \vec{b}, \vec{c} \) are the position vectors of points A, B, and C respectively, we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises MCQ|134 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.3|18 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

A, B, C and D have position vectors veca, vecb, vecc and vecd , repectively, such that veca-vecb = 2(vecd-vecc) . Then

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

Prove that the points A,B,C wth positon vectros veca,vecb,vecc are collinear if and only if (vecbxxvecc)+(veccxxveca)+(vecaxxvecb)=vec0

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to

Three points whose position vectors are veca,vecb,vecc will be collinear if (A) lamdaveca+muvecb=(lamda+mu)vecc (B) vecaxxvecb+vecbxxvecc+veccxxveca=0 (C) [veca vecb vecc]=0 (D) none of these

If veca,vecb,vecc are linearly independent vectors, then ((veca+2vecb)xx(2vecb+vecc).(5vecc+veca))/(veca.(vecbxxvecc)) is equal to

Express veca,vecb,vecc in terms of vecbxxvecc, veccxxveca and vecaxxvecb .

The volume of a tetrahedron determined by the vectors veca, vecb, vecc is (3)/(4) cubic units. The volume (in cubic units) of a tetrahedron determined by the vectors 3(veca xx vecb), 4(vecbxxc) and 5(vecc xx veca) will be