Home
Class 12
MATHS
Let vecp and vecq any two othogonal vect...

Let `vecp and vecq` any two othogonal vectors of equal magnitude 4 each. Let `veca ,vecb and vecc` be any three vectors of lengths `7sqrt15 and 2sqrt33`, mutually perpendicular to each other. Then find the distance of the vector `(veca.vecp)vecp+(veca.vecq)vecq+(veca.(vecpxxvecq))(vecpxxvecq)+(vecb.vecp)vecp+(vecb.vecp)vecq+ `
`(vecb.(vecb.vecq))(vecpxxvecq)+(vecc.vecp)vecp+(vecc.vecq)vecq+(vecc.(vecpxxvecq))(vecpxxvecq)` from the origin.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the distance of the vector \[ \vec{a} \cdot \vec{p} \vec{p} + \vec{a} \cdot \vec{q} \vec{q} + \vec{a} \cdot (\vec{p} \times \vec{q})(\vec{p} \times \vec{q}) + \vec{b} \cdot \vec{p} \vec{p} + \vec{b} \cdot \vec{q} \vec{q} + \vec{b} \cdot (\vec{b} \cdot \vec{q})(\vec{p} \times \vec{q}) + \vec{c} \cdot \vec{p} \vec{p} + \vec{c} \cdot \vec{q} \vec{q} + \vec{c} \cdot (\vec{p} \times \vec{q})(\vec{p} \times \vec{q}) \] from the origin. ### Step 1: Understanding the Given Vectors Given: - \(\vec{p}\) and \(\vec{q}\) are orthogonal vectors of equal magnitude \(4\). - \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are mutually perpendicular vectors with lengths \(7\sqrt{15}\) and \(2\sqrt{33}\). ### Step 2: Calculate the Components Since \(\vec{p}\) and \(\vec{q}\) are orthogonal, we can denote: - \(|\vec{p}| = |\vec{q}| = 4\) - \(|\vec{p} \times \vec{q}| = |\vec{p}| |\vec{q}| = 4 \cdot 4 = 16\) ### Step 3: Evaluate Each Term 1. **For \(\vec{a}\)**: \[ \vec{a} \cdot \vec{p} \vec{p} + \vec{a} \cdot \vec{q} \vec{q} + \vec{a} \cdot (\vec{p} \times \vec{q})(\vec{p} \times \vec{q}) \] This simplifies to: \[ (\vec{a} \cdot \vec{p}) \vec{p} + (\vec{a} \cdot \vec{q}) \vec{q} + (\vec{a} \cdot (\vec{p} \times \vec{q})) (\vec{p} \times \vec{q}) \] Since \(\vec{a}\) is perpendicular to \(\vec{p}\) and \(\vec{q}\), the dot products \(\vec{a} \cdot \vec{p}\) and \(\vec{a} \cdot \vec{q}\) will be zero. Thus, we only need to consider the last term. 2. **For \(\vec{b}\)**: Similarly, we can evaluate: \[ \vec{b} \cdot \vec{p} \vec{p} + \vec{b} \cdot \vec{q} \vec{q} + \vec{b} \cdot (\vec{b} \cdot \vec{q})(\vec{p} \times \vec{q}) \] Again, the first two terms will be zero, leaving us with the last term. 3. **For \(\vec{c}\)**: The same logic applies: \[ \vec{c} \cdot \vec{p} \vec{p} + \vec{c} \cdot \vec{q} \vec{q} + \vec{c} \cdot (\vec{p} \times \vec{q})(\vec{p} \times \vec{q}) \] Again, the first two terms will be zero. ### Step 4: Combine the Results The total vector can be simplified to: \[ (\vec{a} \cdot (\vec{p} \times \vec{q})) (\vec{p} \times \vec{q}) + (\vec{b} \cdot (\vec{p} \times \vec{q})) (\vec{p} \times \vec{q}) + (\vec{c} \cdot (\vec{p} \times \vec{q})) (\vec{p} \times \vec{q}) \] This can be factored out: \[ (\vec{a} \cdot (\vec{p} \times \vec{q}) + \vec{b} \cdot (\vec{p} \times \vec{q}) + \vec{c} \cdot (\vec{p} \times \vec{q})) (\vec{p} \times \vec{q}) \] ### Step 5: Calculate the Magnitude The distance from the origin is given by the magnitude of the resulting vector: \[ \sqrt{(\vec{a}^2 + \vec{b}^2 + \vec{c}^2) \cdot |\vec{p}|^2} \] Substituting the values: - \(|\vec{p}|^2 = 4^2 = 16\) - \(|\vec{a}|^2 = (7\sqrt{15})^2 = 735\) - \(|\vec{b}|^2 = (2\sqrt{33})^2 = 132\) Thus, \[ \text{Distance} = \sqrt{735 + 132} \cdot 4 = \sqrt{867} \cdot 4 = 4\sqrt{867} \] ### Final Answer The distance from the origin is \(4\sqrt{867}\).

To solve the problem, we need to find the distance of the vector \[ \vec{a} \cdot \vec{p} \vec{p} + \vec{a} \cdot \vec{q} \vec{q} + \vec{a} \cdot (\vec{p} \times \vec{q})(\vec{p} \times \vec{q}) + \vec{b} \cdot \vec{p} \vec{p} + \vec{b} \cdot \vec{q} \vec{q} + \vec{b} \cdot (\vec{b} \cdot \vec{q})(\vec{p} \times \vec{q}) + \vec{c} \cdot \vec{p} \vec{p} + \vec{c} \cdot \vec{q} \vec{q} + \vec{c} \cdot (\vec{p} \times \vec{q})(\vec{p} \times \vec{q}) \] from the origin. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises MCQ|134 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.3|18 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

Two vectors vecP and vecQ that are perpendicular to each other if :

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

if veca,vecb and vecc are mutally perpendicular vectors of equal magnitudes, then find the angle between vectors and veca+ vecb+vecc .

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

[vecaxxvecpvecbxxvecqveccxxvecr]+[vecaxxvecq vecbxxvecr vecc xxvecp]+[vecaxxvecr vecbxxvecp veccxxvecq]= (A) vecp+vecq+vecr (B) veca+vecb+vecc (C) 0 (D) none of these

If the vectors vecP=ahati+ahatj+3hatk' and 'vecQ=ahati-2hatj-hatk are perpendicular to each other. Find the value of a ?

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

If veca= vecP + vecq, vecP xx vecb = vec0 and vecq. vecb =0 then prove that (vecbxx(veca xx vecb))/(vecb.vecb)=vecq

If the vectors 3vecP+vecq, 5vecP - 3vecq and 2 vecp+ vecq, 4 vecp - 2vecq are pairs of mutually perpendicular vectors, the find the angle between vectors vecp and vecq .

The vector vecP=ahati+ahatj+3hatj and vecQ=ahati-2hatj-hatk , are perpendicular to each other. The positive value of a is