Home
Class 12
MATHS
If vec e1, vec e2, vec e3a n d vec E1, ...

If ` vec e_1, vec e_2, vec e_3a n d vec E_1, vec E_2, vec E_3` are two sets of vectors such that ` vec e_idot vec E_j=1,ifi=j` and `vec e_idot vec E_j=0a n difi!=j ,` then prove that `[ (vec e_1, vec e_2 ,vec e_3)][ (vec E_1, vec E_2, vec E_3) ]=1.`

Text Solution

AI Generated Solution

To prove that \([ ( \vec{e_1}, \vec{e_2}, \vec{e_3} )][ ( \vec{E_1}, \vec{E_2}, \vec{E_3} )] = 1\), we will use the properties of the dot product and the definition of the scalar triple product. ### Step 1: Understand the given conditions We are given two sets of vectors \(\vec{e_1}, \vec{e_2}, \vec{e_3}\) and \(\vec{E_1}, \vec{E_2}, \vec{E_3}\) such that: - \(\vec{e_i} \cdot \vec{E_j = 1}\) if \(i = j\) - \(\vec{e_i} \cdot \vec{E_j = 0}\) if \(i \neq j\) This means that the vectors \(\vec{e_i}\) and \(\vec{E_j}\) are orthonormal. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises MCQ|134 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.3|18 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

If vec e_1, vec e_2, vec e_3a n d vec E_1, vec E_2, vec E_3 are two sets of vectors such that vec e_idot vec E_j=1,ifi=ja n d vec e_idot vec E_j=0a n difi!=j , then prove that [ vec e_1 vec e_2 vec e_3][ vec E_1 vec E_2 vec E_3]=1.

A B C D E is pentagon, prove that vec A B + vec B C + vec C D + vec D E+ vec E A = vec0

A B C D E is pentagon, prove that vec A B+ vec A E+ vec B C+ vec D C+ vec E D+ vec A C=3 vec A C

If vec axx vec b= vec bxx vec c!=0,w h e r e vec a , vec b ,a n d vec c are coplanar vectors, then for some scalar k prove that vec a+ vec c=k vec bdot

Let vec a , vec b , vec c , be three non-zero vectors. If vec a .(vec bxx vec c)=0 and vec b and vec c are not parallel, then prove that vec a=lambda vec b+mu vec c ,w h e r elambda are some scalars dot

If ( vec axx vec b)xx( vec bxx vec c)= vec b ,w h e r e vec a , vec b ,a n d vec c are nonzero vectors, then 1. vec a , vec b ,a n d vec c can be coplanar 2. vec a , vec b ,a n d vec c must be coplanar 3. vec a , vec b ,a n d vec c cannot be coplanar 4.none of these

prove that | vec axx vec b|=( vec adot vec b)t a ntheta,\ w h e r e\ theta is the angle between vec a\ a n d\ vec bdot

Given the following simultaneous equation for vectors vec xa n d vec y , vec x+ vec y= vec a , vec xxx vec y= vec b , vec xdot vec a=1,t h e n vec x= dot ( vec a+( vec axx vec b))/( vec a^2) (B) ( vec a+( vec axx vec b))/(| vec a|) (C) (( vec a+( vec axx vec b)))/( vec b^2) (D) none of these

If vec x+ vec cxx vec y= vec aa n d vec y+ vec cxx vec x= vec b ,w h e r e vec c is a nonzero vector, then which of the following is not correct? a. vec x=( vec bxx vec c+ vec a+( vec c dot vec a) vec c)/(1+ vec c dot vec c) b. vec x=( vec cxx vec b+ vec b+( vec c dot vec a) vec c)/(1+ vec c dot vec c) c. vec y=( vec axx vec c+ vec b+( vec c dot vec b) vec c)/(1+ vec c dot vec c) d. none of these

Given that vec a , vec b , vec p , vec q are four vectors such that vec a+ vec b=mu vec p , vec b*vec q=0a n d|vec b|^2=1,w h e r emu is a scalar. Then |( vec adot vec q) vec p-( vec pdot vec q) vec a| is equal to (a) 2| vec p . vec q| (b) (1//2)| vec p . vec q| (c) | vec pxx vec q| (d) | vec p . vec q|