Home
Class 12
MATHS
If A(veca).B(vecb) and C(vecc) are three...

If A`(veca).B(vecb) and C(vecc)` are three non-collinear point and origin does not lie in the plane of the points A, B and C, then for any point `P(vecP)` in the plane of the `triangleABC` such that vector `vec(OP)` is `bot ` to plane of `trianglABC`, show that `vec(OP)=([vecavecbvecc] (vecaxxvecb+vecbxxvecc+veccxxveca))/(4Delta^(2))`

Text Solution

Verified by Experts

P lies in the plane of A,B and C , therefore,
`vec(AP).(vec(Bp) xx vec(CP))=0`
`Rightarrow (vecp.veca).(veccxxvecp+vecpxxvecb+vecbxxvecc)=0`
`or 0 +0+vecp . (vecbxxvecc)-veca.(veccxxvecp)`
`-veca.(vecpxxvecb)-veca.(vecbxxvecc)=0`
`or vecp . (vecbxxvecc)=vecp.(veccxxveca) +vecp.(vecaxxvecb)`
`-veca . (vecb xx vecc) =0`
`or vecp.(vecbxxvecc+veccxxveca+vecaxxvecb) = [veca vecbvecc]`
now vector perependicular to the plane ABC is
`(vecb xx vecc +vecc xx veca +veca xxvecb)`
Let ` vec(OP) = lambda(veca xx vecb + vecb +vecb xx vecc +vecc xx veca)`
since `vec(OP).(vecaxxvecb+vecbxxvecc+veccxxveca)=[veca vecbvecc]`
`or ([veca vecb vecc])/(4Delta^(2))`
`vec(OP) = ([veca vecb vecc] (veca xxvecb + vecb xxvecc +veccxxveca))/(4Delta^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises MCQ|134 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.3|18 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

If A( vec a),B( vec b)a n dC( vec c) are three non-collinear points and origin does not lie in the plane of the points A ,Ba n dC , then point P( vec p) in the plane of the A B C such that vector vec O P is _|_ to planeof A B C , show that vec O P=([ vec a vec b vec c]( vec axx vec b+ vec bxx vec c+ vec cxx vec a))/(4^2),w h e r e is the area of the A B Cdot

If veca,vecb,vecc be three vectors such that [veca vecb vec c]=4 then [vecaxxvecb vecbxxvecc veccxxveca] is equal to

A(veca),B(vecb),C(vecc) are the vertices of the triangle ABC and R(vecr) is any point in the plane of triangle ABC , then r.(vecaxxvecb+vecbxxvecc+veccxxveca) is always equal to

If veca,vecb,vec c are position vectors of the non- collinear points A, B, C respectively, the shortest distance of A from BC is

For any three vectors veca , vec b , vec c show that vecaxx( vec b+ vec c)+ vec bxx( vec c+ vec a)+ vec cxx( vec a+ vec b)= vec0

If vector veca lies in the plane of vectors vecb and vecc which of the following is correct? (A) veca.(vecbxxvecc)=-1 (B) veca.(vecbxxvecc)=0 (C) veca.(vecbxxvecc)=1 (D) veca.(vecbxxvecc)=2

If veca, vecb and vecc are the position vectors of the vertices A,B and C. respectively , of triangleABC . Prove that the perpendicualar distance of the vertex A from the base BC of the triangle ABC is (|vecaxxvecb+vecbxxvecc+veccxxveca|)/(|vecc-vecb|)

vec a , vec b and vec c are the position vectors of points A ,B and C respectively, prove that : vec a× vec b+ vec b× vec c+ vec c× vec a is vector perpendicular to the plane of triangle A B Cdot

If vec a , vec b and vec c are three non-zero vectors, no two of which are collinear, vec a+2 vec b is collinear with vec c and vec b+3 vec c is collinear with vec a , then find the value of | vec a+2 vec b+6 vec c| .

The vertices of a triangle have the position vectors veca,vecb,vecc and p( r) is a point in the plane of Delta such that: veca.vecb+ vecc.vecr = veca.vecc + vecb.vecr = vecb.vecc+veca.vecr then for the Delta , P is the: