Home
Class 12
MATHS
A parallelogram is constructed on 3veca+...

A parallelogram is constructed on `3veca+vecb and veca-4vecb, where |veca|=6 and |vecb|=8` and `veca and vecb` are anti parallel then the length of the longer diagonal is (A) 40 (B) 64 (C) 32 (D) 48

A

40

B

64

C

32

D

48

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will find the length of the longer diagonal of the parallelogram constructed on the vectors \( \vec{u} = 3\vec{a} + \vec{b} \) and \( \vec{v} = \vec{a} - 4\vec{b} \). ### Step 1: Identify the vectors We have: - \( \vec{u} = 3\vec{a} + \vec{b} \) - \( \vec{v} = \vec{a} - 4\vec{b} \) ### Step 2: Find the diagonal vector The diagonals of the parallelogram can be found by adding and subtracting the vectors \( \vec{u} \) and \( \vec{v} \). The longer diagonal \( \vec{d_1} \) is given by: \[ \vec{d_1} = \vec{u} + \vec{v} = (3\vec{a} + \vec{b}) + (\vec{a} - 4\vec{b}) = 3\vec{a} + \vec{b} + \vec{a} - 4\vec{b} = 4\vec{a} - 3\vec{b} \] ### Step 3: Calculate the magnitude of the diagonal vector To find the length of the diagonal, we need to calculate the magnitude of \( \vec{d_1} \): \[ |\vec{d_1}| = |4\vec{a} - 3\vec{b}| \] ### Step 4: Use the formula for the magnitude of a vector The magnitude of a vector \( \vec{d} = x\vec{a} + y\vec{b} \) can be calculated using: \[ |\vec{d}|^2 = x^2|\vec{a}|^2 + y^2|\vec{b}|^2 + 2xy(\vec{a} \cdot \vec{b}) \] In our case: - \( x = 4 \) - \( y = -3 \) ### Step 5: Substitute the values Given \( |\vec{a}| = 6 \) and \( |\vec{b}| = 8 \), and since \( \vec{a} \) and \( \vec{b} \) are anti-parallel, the angle \( \theta = \pi \) implies \( \cos(\pi) = -1 \). Therefore, we have: \[ \vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos(\pi) = 6 \times 8 \times (-1) = -48 \] Now substituting into the magnitude formula: \[ |\vec{d_1}|^2 = 4^2 |\vec{a}|^2 + (-3)^2 |\vec{b}|^2 + 2 \cdot 4 \cdot (-3)(\vec{a} \cdot \vec{b}) \] \[ = 16 \cdot 36 + 9 \cdot 64 + 2 \cdot 4 \cdot (-3)(-48) \] ### Step 6: Calculate each term Calculating each term: 1. \( 16 \cdot 36 = 576 \) 2. \( 9 \cdot 64 = 576 \) 3. \( 2 \cdot 4 \cdot (-3)(-48) = 2 \cdot 4 \cdot 3 \cdot 48 = 1152 \) ### Step 7: Combine the results Now combine these results: \[ |\vec{d_1}|^2 = 576 + 576 + 1152 = 2304 \] ### Step 8: Take the square root Finally, take the square root to find the length of the diagonal: \[ |\vec{d_1}| = \sqrt{2304} = 48 \] ### Conclusion The length of the longer diagonal is \( 48 \).

To solve the problem step by step, we will find the length of the longer diagonal of the parallelogram constructed on the vectors \( \vec{u} = 3\vec{a} + \vec{b} \) and \( \vec{v} = \vec{a} - 4\vec{b} \). ### Step 1: Identify the vectors We have: - \( \vec{u} = 3\vec{a} + \vec{b} \) - \( \vec{v} = \vec{a} - 4\vec{b} \) ### Step 2: Find the diagonal vector ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

If |veca+vecb|=|veca-vecb| show that veca_|_vecb .

If veca * vecb = |veca xx vecb| , then this angle between veca and vecb is,

Find |veca-vecb| , if two vector veca and vecb are such that |veca|=4,|vecb|=5 and veca.vecb=3

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

Find |veca| and |vecb| if (veca+vecb).(veca-vecb)=8 and |veca|=8|vecb| .

Find |veca| and |vecb| if (veca+vecb).(veca-vecb)=8 and |veca|=8|vecb|.

Find |veca|and |vecb|, if (veca+vecb).(veca-vecb) =8 and |veca|=8|vecb|

If |veca|=5 , |veca-vecb| = 8 and |veca +vecb|=10 then find |vecb|

Find |veca-vecb| , if two vectors veca and vecb are such that |veca|=2,|vecb|=3 and veca.vecb=4 .

The value of [(veca-vecb, vecb-vecc, vecc-veca)] , where |veca|=1, |vecb|=5, |vecc|=3 , is

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. The value of x for which the angle between veca=2x^(2)hati+4xhatj + ha...

    Text Solution

    |

  2. If vectors veca and vecb are two adjecent sides of a paralleogram, the...

    Text Solution

    |

  3. A parallelogram is constructed on 3veca+vecb and veca-4vecb, where |ve...

    Text Solution

    |

  4. Let veca.vecb=0 where veca and vecb are unit vectors and the vector ve...

    Text Solution

    |

  5. veca and vecc are unit vectors and |vecb|=4 the angle between veca and...

    Text Solution

    |

  6. Let the position vectors of the points Pa n dQ be 4 hat i+ hat j+la...

    Text Solution

    |

  7. A vector of magnitude sqrt2 coplanar with the vectors veca=hati+hatj+2...

    Text Solution

    |

  8. Let P be a point interior to the acute triangle A B Cdot If P A+P B...

    Text Solution

    |

  9. G is the centroid of triangle ABC and A1 and B1 are the midpoints of s...

    Text Solution

    |

  10. Points veca , vecb vecc and vecd are coplanar and (sin alpha)veca + (2...

    Text Solution

    |

  11. If veca and vecb are any two vectors of magnitudes 1and 2. respectivel...

    Text Solution

    |

  12. If veca and vecb are any two vectors of magnitude 2 and 3 respective...

    Text Solution

    |

  13. veca, vecb and vecc are unit vecrtors such that |veca + vecb+ 3vecc|=4...

    Text Solution

    |

  14. If the vector product of a constant vector vec O A with a variable ...

    Text Solution

    |

  15. Let vecu,vecv,vecw be such that |vecu|=1,|vecv|=2,|vecw|3. If the proj...

    Text Solution

    |

  16. If veca,vecb,vecc are non-coplanar vectors and vecu and vecv are any t...

    Text Solution

    |

  17. if vecalpha||(vecbetaxxvecgamma), " then " (vecalphaxxvecgamma) equal ...

    Text Solution

    |

  18. The position vectors of points A,B and C are hati+hatj,hati + 5hatj -h...

    Text Solution

    |

  19. Given three vectors eveca, vecb and vecc two of which are non-collinea...

    Text Solution

    |

  20. If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3ve...

    Text Solution

    |