Home
Class 12
MATHS
Let the position vectors of the point...

Let the position vectors of the points `Pa n dQ` be `4 hat i+ hat j+lambda hat ka n d2 hat i- hat j+lambda hat k ,` respectively. Vector ` hat i- hat j+6 hat k` is perpendicular to the plane containing the origin and the points `Pa n dQ` . Then `lambda` equals `1//2` b. `1//2` c. `1` d. none of these

A

`-1//2`

B

`1//2`

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda \) such that the vector \( \hat{i} - \hat{j} + 6\hat{k} \) is perpendicular to the plane formed by the origin and the points \( P \) and \( Q \) with position vectors \( \mathbf{OP} = 4\hat{i} + \hat{j} + \lambda\hat{k} \) and \( \mathbf{OQ} = 2\hat{i} - \hat{j} + \lambda\hat{k} \). ### Step-by-Step Solution: 1. **Identify the Position Vectors**: - The position vector of point \( P \) is \( \mathbf{OP} = 4\hat{i} + \hat{j} + \lambda\hat{k} \). - The position vector of point \( Q \) is \( \mathbf{OQ} = 2\hat{i} - \hat{j} + \lambda\hat{k} \). 2. **Find the Vectors \( \mathbf{OP} \) and \( \mathbf{OQ} \)**: - The vector \( \mathbf{OP} \) is \( (4, 1, \lambda) \). - The vector \( \mathbf{OQ} \) is \( (2, -1, \lambda) \). 3. **Calculate the Cross Product \( \mathbf{OP} \times \mathbf{OQ} \)**: - The cross product can be calculated using the determinant: \[ \mathbf{OP} \times \mathbf{OQ} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 1 & \lambda \\ 2 & -1 & \lambda \end{vmatrix} \] 4. **Evaluate the Determinant**: - Expanding the determinant: \[ \mathbf{OP} \times \mathbf{OQ} = \hat{i} \begin{vmatrix} 1 & \lambda \\ -1 & \lambda \end{vmatrix} - \hat{j} \begin{vmatrix} 4 & \lambda \\ 2 & \lambda \end{vmatrix} + \hat{k} \begin{vmatrix} 4 & 1 \\ 2 & -1 \end{vmatrix} \] - Calculating each of these determinants: \[ = \hat{i} (1 \cdot \lambda - (-1) \cdot \lambda) - \hat{j} (4 \cdot \lambda - 2 \cdot \lambda) + \hat{k} (4 \cdot (-1) - 2 \cdot 1) \] \[ = \hat{i} (2\lambda) - \hat{j} (2\lambda) + \hat{k} (-6) \] \[ = 2\lambda \hat{i} - 2\lambda \hat{j} - 6 \hat{k} \] 5. **Set the Cross Product Equal to the Given Vector**: - The vector \( \hat{i} - \hat{j} + 6\hat{k} \) is perpendicular to the plane, which means it is parallel to the cross product: \[ 2\lambda \hat{i} - 2\lambda \hat{j} - 6 \hat{k} = k(\hat{i} - \hat{j} + 6\hat{k}) \text{ for some scalar } k \] 6. **Set Up the Ratios**: - From the coefficients, we get the following ratios: \[ \frac{2\lambda}{1} = \frac{-2\lambda}{-1} = \frac{-6}{6} \] - This simplifies to: \[ 2\lambda = 2 \quad \text{and} \quad -2\lambda = -6 \] 7. **Solve for \( \lambda \)**: - From \( 2\lambda = 2 \), we find: \[ \lambda = 1 \] - From \( -2\lambda = -6 \), we find: \[ \lambda = 3 \] - However, both conditions must hold true, and we find that \( \lambda = 1 \) satisfies the conditions. ### Conclusion: The value of \( \lambda \) is \( 1 \).

To solve the problem, we need to find the value of \( \lambda \) such that the vector \( \hat{i} - \hat{j} + 6\hat{k} \) is perpendicular to the plane formed by the origin and the points \( P \) and \( Q \) with position vectors \( \mathbf{OP} = 4\hat{i} + \hat{j} + \lambda\hat{k} \) and \( \mathbf{OQ} = 2\hat{i} - \hat{j} + \lambda\hat{k} \). ### Step-by-Step Solution: 1. **Identify the Position Vectors**: - The position vector of point \( P \) is \( \mathbf{OP} = 4\hat{i} + \hat{j} + \lambda\hat{k} \). - The position vector of point \( Q \) is \( \mathbf{OQ} = 2\hat{i} - \hat{j} + \lambda\hat{k} \). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

Let the position vectors of the points Pa n dQ be 4 hat i+ hat j+lambda hat ka n d2 hat i- hat j+lambda hat k , respectively. Vector hat i- hat j+6 hat k is perpendicular to the plane containing the origin and the points Pa n dQ . Then lambda equals a -1//2 b. 1//2 c. 1 d. none of these

The position vectors of the points P ,\ Q ,\ R are hat i+2 hat j+3 hat k ,\ -2 hat i+3 hat j+5 hat k\ a n d\ 7 hat i- hat k respectively. Prove that P ,\ Q\ a n d\ R are collinear points.

The position vectors of Pa n dQ are 5 hat i+4 hat j+a hat k and - hat i+2 hat j-2 hat k , respectively. If the distance between them is 7, then find the value of adot

For what value lambda are the vectors vec a=2 hat i+\ lambda hat j+ hat k\ a n d\ vec b= hat i-\ 2 hat j+3 hat k perpendicular to each other?

For what value of lambda are the vector vec a=2 hat i+lambda hat j+ hat k\ a n d\ vec b= hat i-2 hat j+3 hat k perpendicular to each other?

For what value of lambda are the vectores vec a=2 hat i+lambda hat j+ hat k\ a n d\ vec b= hat i-2 hat j+3 hat k perpendicular to each other?

The position vectors of the vertices A ,B ,a n dC of a triangle are hat i+ hat j , hat j+ hat ka n d hat i+ hat k , respectively. Find the unite vector hat r lying in the plane of A B C and perpendicular to I A ,w h e r eI is the incentre of the triangle.

Find the value of lambda so that the vectors vec a=2 hat i+lambda hat j+ hat ka n d vec b= hat i-2 hat j+3 hat k are perpendicular to each other.

Find a vector of magnitude 9, which is perpendicular to both vectors 4 hat i- hat j+3 hat ka n d-2 hat i+ hat j-2 hat k .

Find the components of a unit vector which is perpendicular to the vectors hat i+2 hat j- hat ka n d2 hat i- hat j+2 hat kdot

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. Let veca.vecb=0 where veca and vecb are unit vectors and the vector ve...

    Text Solution

    |

  2. veca and vecc are unit vectors and |vecb|=4 the angle between veca and...

    Text Solution

    |

  3. Let the position vectors of the points Pa n dQ be 4 hat i+ hat j+la...

    Text Solution

    |

  4. A vector of magnitude sqrt2 coplanar with the vectors veca=hati+hatj+2...

    Text Solution

    |

  5. Let P be a point interior to the acute triangle A B Cdot If P A+P B...

    Text Solution

    |

  6. G is the centroid of triangle ABC and A1 and B1 are the midpoints of s...

    Text Solution

    |

  7. Points veca , vecb vecc and vecd are coplanar and (sin alpha)veca + (2...

    Text Solution

    |

  8. If veca and vecb are any two vectors of magnitudes 1and 2. respectivel...

    Text Solution

    |

  9. If veca and vecb are any two vectors of magnitude 2 and 3 respective...

    Text Solution

    |

  10. veca, vecb and vecc are unit vecrtors such that |veca + vecb+ 3vecc|=4...

    Text Solution

    |

  11. If the vector product of a constant vector vec O A with a variable ...

    Text Solution

    |

  12. Let vecu,vecv,vecw be such that |vecu|=1,|vecv|=2,|vecw|3. If the proj...

    Text Solution

    |

  13. If veca,vecb,vecc are non-coplanar vectors and vecu and vecv are any t...

    Text Solution

    |

  14. if vecalpha||(vecbetaxxvecgamma), " then " (vecalphaxxvecgamma) equal ...

    Text Solution

    |

  15. The position vectors of points A,B and C are hati+hatj,hati + 5hatj -h...

    Text Solution

    |

  16. Given three vectors eveca, vecb and vecc two of which are non-collinea...

    Text Solution

    |

  17. If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3ve...

    Text Solution

    |

  18. If in a right-angled triangle A B C , the hypotenuse A B=p ,t h e n...

    Text Solution

    |

  19. Resolved part of vector veca and along vector vecb " is " veca1 and th...

    Text Solution

    |

  20. veca=2hati-hatj+hatk,vecb=hatj+2hatj-hatk,vecc=hati+hatj -2 hatk . A v...

    Text Solution

    |