Home
Class 12
MATHS
If veca and vecb are any two vectors of ...

If `veca and vecb` are any two vectors of magnitudes 1and 2. respectively, and `(1-3veca.vecb)^(2)+|2veca+vecb+3(vecaxxvecb)|^(2)=47` then the angle between `veca and vecb ` is

A

`pi//3`

B

`pi-cos^(-1) (1//4)`

C

`(2pi)/3`

D

`cos^(-1) (1//4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \(\vec{a}\) and \(\vec{b}\), we start with the given equation: \[ (1 - 3 \vec{a} \cdot \vec{b})^2 + |2\vec{a} + \vec{b} + 3(\vec{a} \times \vec{b})|^2 = 47 \] ### Step 1: Let the angle between \(\vec{a}\) and \(\vec{b}\) be \(\theta\). We know that: - The magnitude of \(\vec{a}\) is \(1\). - The magnitude of \(\vec{b}\) is \(2\). - The dot product \(\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta = 1 \cdot 2 \cos \theta = 2 \cos \theta\). ### Step 2: Substitute the dot product into the equation. Substituting \(\vec{a} \cdot \vec{b}\) into the equation gives us: \[ (1 - 3(2 \cos \theta))^2 + |2\vec{a} + \vec{b} + 3(\vec{a} \times \vec{b})|^2 = 47 \] This simplifies to: \[ (1 - 6 \cos \theta)^2 + |2\vec{a} + \vec{b} + 3(\vec{a} \times \vec{b})|^2 = 47 \] ### Step 3: Expand the first term. Expanding \((1 - 6 \cos \theta)^2\): \[ 1 - 12 \cos \theta + 36 \cos^2 \theta \] ### Step 4: Calculate the magnitude of the second term. Now we need to calculate \(|2\vec{a} + \vec{b} + 3(\vec{a} \times \vec{b})|^2\). Using the properties of magnitudes and the fact that \(\vec{a} \times \vec{b}\) is perpendicular to both \(\vec{a}\) and \(\vec{b}\): \[ |2\vec{a} + \vec{b}|^2 + |3(\vec{a} \times \vec{b})|^2 + 2(2\vec{a} \cdot \vec{b}) = |2\vec{a}|^2 + |\vec{b}|^2 + 9|\vec{a} \times \vec{b}|^2 \] Calculating each part: - \(|2\vec{a}|^2 = 4\) - \(|\vec{b}|^2 = 4\) - \(|\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 \sin^2 \theta = 1 \cdot 4 \sin^2 \theta = 4 \sin^2 \theta\) Thus, we have: \[ |2\vec{a} + \vec{b}|^2 = 4 + 4 + 9(4 \sin^2 \theta) + 4 \cos \theta \] ### Step 5: Combine the terms and set equal to 47. Combining everything gives: \[ 1 - 12 \cos \theta + 36 \cos^2 \theta + 8 + 36 + 36 \sin^2 \theta = 47 \] ### Step 6: Simplify the equation. Using the identity \(\sin^2 \theta + \cos^2 \theta = 1\): \[ 1 - 12 \cos \theta + 36 \cos^2 \theta + 8 + 36 + 36(1 - \cos^2 \theta) = 47 \] This simplifies to: \[ 1 - 12 \cos \theta + 36 \cos^2 \theta + 8 + 36 = 47 \] ### Step 7: Solve for \(\cos \theta\). This reduces to: \[ -12 \cos \theta + 36 \cos^2 \theta = 2 \] Rearranging gives: \[ 36 \cos^2 \theta - 12 \cos \theta - 2 = 0 \] ### Step 8: Use the quadratic formula. Using the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): Here, \(a = 36\), \(b = -12\), and \(c = -2\): \[ \cos \theta = \frac{12 \pm \sqrt{(-12)^2 - 4 \cdot 36 \cdot (-2)}}{2 \cdot 36} \] Calculating the discriminant: \[ \sqrt{144 + 288} = \sqrt{432} = 12\sqrt{3} \] So, \[ \cos \theta = \frac{12 \pm 12\sqrt{3}}{72} = \frac{1 \pm \sqrt{3}}{6} \] ### Step 9: Determine the angle \(\theta\). We find that: \[ \cos \theta = -\frac{1}{2} \implies \theta = \frac{2\pi}{3} \text{ radians or } 120^\circ \] Thus, the angle between \(\vec{a}\) and \(\vec{b}\) is: \[ \theta = \frac{2\pi}{3} \]

To find the angle between the vectors \(\vec{a}\) and \(\vec{b}\), we start with the given equation: \[ (1 - 3 \vec{a} \cdot \vec{b})^2 + |2\vec{a} + \vec{b} + 3(\vec{a} \times \vec{b})|^2 = 47 \] ### Step 1: Let the angle between \(\vec{a}\) and \(\vec{b}\) be \(\theta\). We know that: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. G is the centroid of triangle ABC and A1 and B1 are the midpoints of s...

    Text Solution

    |

  2. Points veca , vecb vecc and vecd are coplanar and (sin alpha)veca + (2...

    Text Solution

    |

  3. If veca and vecb are any two vectors of magnitudes 1and 2. respectivel...

    Text Solution

    |

  4. If veca and vecb are any two vectors of magnitude 2 and 3 respective...

    Text Solution

    |

  5. veca, vecb and vecc are unit vecrtors such that |veca + vecb+ 3vecc|=4...

    Text Solution

    |

  6. If the vector product of a constant vector vec O A with a variable ...

    Text Solution

    |

  7. Let vecu,vecv,vecw be such that |vecu|=1,|vecv|=2,|vecw|3. If the proj...

    Text Solution

    |

  8. If veca,vecb,vecc are non-coplanar vectors and vecu and vecv are any t...

    Text Solution

    |

  9. if vecalpha||(vecbetaxxvecgamma), " then " (vecalphaxxvecgamma) equal ...

    Text Solution

    |

  10. The position vectors of points A,B and C are hati+hatj,hati + 5hatj -h...

    Text Solution

    |

  11. Given three vectors eveca, vecb and vecc two of which are non-collinea...

    Text Solution

    |

  12. If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3ve...

    Text Solution

    |

  13. If in a right-angled triangle A B C , the hypotenuse A B=p ,t h e n...

    Text Solution

    |

  14. Resolved part of vector veca and along vector vecb " is " veca1 and th...

    Text Solution

    |

  15. veca=2hati-hatj+hatk,vecb=hatj+2hatj-hatk,vecc=hati+hatj -2 hatk . A v...

    Text Solution

    |

  16. If P is any arbitary point on the circumcurcle of the equilateral tria...

    Text Solution

    |

  17. If vecr and vecs are non-zero constant vectors and the scalar b is cho...

    Text Solution

    |

  18. veca and vecb are two unit vectors that are mutually perpendicular. A...

    Text Solution

    |

  19. Given that veca,vecb,vecp,vecq are four vectors such that veca + vecb...

    Text Solution

    |

  20. The position vectors of the vertices A, B and C of a triangle are thre...

    Text Solution

    |