Home
Class 12
MATHS
veca, vecb and vecc are unit vecrtors su...

`veca, vecb and vecc` are unit vecrtors such that `|veca + vecb+ 3vecc|=4` Angle between `veca and vecb is theta_(1)` , between `vecb and vecc is theta_(2)` and between `veca and vecb` varies `[pi//6, 2pi//3]` . Then the maximum value of `cos theta_(1)+3cos theta_(2)` is

A

3

B

4

C

`2sqrt2`

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given condition about the unit vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\): 1. **Given Condition**: \[ |\vec{a} + \vec{b} + 3\vec{c}| = 4 \] Since \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are unit vectors, we have: \[ |\vec{a}| = |\vec{b}| = |\vec{c}| = 1 \] 2. **Squaring Both Sides**: Squaring the modulus gives us: \[ |\vec{a} + \vec{b} + 3\vec{c}|^2 = 16 \] Expanding the left-hand side: \[ (\vec{a} + \vec{b} + 3\vec{c}) \cdot (\vec{a} + \vec{b} + 3\vec{c}) = \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + 9\vec{c} \cdot \vec{c} + 2\vec{a} \cdot \vec{b} + 6\vec{a} \cdot \vec{c} + 6\vec{b} \cdot \vec{c} \] Substituting the values of the dot products: \[ 1 + 1 + 9 + 2\vec{a} \cdot \vec{b} + 6\vec{a} \cdot \vec{c} + 6\vec{b} \cdot \vec{c} = 16 \] Simplifying gives: \[ 11 + 2\vec{a} \cdot \vec{b} + 6\vec{a} \cdot \vec{c} + 6\vec{b} \cdot \vec{c} = 16 \] Therefore: \[ 2\vec{a} \cdot \vec{b} + 6\vec{a} \cdot \vec{c} + 6\vec{b} \cdot \vec{c} = 5 \] 3. **Using Angles**: Let \(\theta_1\) be the angle between \(\vec{a}\) and \(\vec{b}\), \(\theta_2\) be the angle between \(\vec{b}\) and \(\vec{c}\), and \(\theta_3\) be the angle between \(\vec{a}\) and \(\vec{c}\). Then: \[ \vec{a} \cdot \vec{b} = \cos \theta_1, \quad \vec{a} \cdot \vec{c} = \cos \theta_3, \quad \vec{b} \cdot \vec{c} = \cos \theta_2 \] Thus, we can rewrite the equation as: \[ 2\cos \theta_1 + 6\cos \theta_2 + 6\cos \theta_3 = 5 \] 4. **Finding Maximum Value**: We need to maximize the expression: \[ \cos \theta_1 + 3\cos \theta_2 \] From the equation \(2\cos \theta_1 + 6\cos \theta_2 + 6\cos \theta_3 = 5\), we can express \(\cos \theta_1\) in terms of \(\cos \theta_2\) and \(\cos \theta_3\): \[ 2\cos \theta_1 = 5 - 6\cos \theta_2 - 6\cos \theta_3 \] Therefore: \[ \cos \theta_1 = \frac{5 - 6\cos \theta_2 - 6\cos \theta_3}{2} \] 5. **Substituting Back**: Substitute this into our expression: \[ \cos \theta_1 + 3\cos \theta_2 = \frac{5 - 6\cos \theta_2 - 6\cos \theta_3}{2} + 3\cos \theta_2 \] Simplifying gives: \[ = \frac{5 + 6\cos \theta_2 - 6\cos \theta_3}{2} \] 6. **Maximizing**: To maximize \(\cos \theta_1 + 3\cos \theta_2\), we need to consider the range of \(\theta_3\) which varies between \(\frac{\pi}{6}\) and \(\frac{2\pi}{3}\). We can find the maximum value of \(\cos \theta_3\) in this range: - At \(\theta_3 = \frac{\pi}{6}\), \(\cos \theta_3 = \frac{\sqrt{3}}{2}\) - At \(\theta_3 = \frac{2\pi}{3}\), \(\cos \theta_3 = -\frac{1}{2}\) We can substitute these values into our expression to find the maximum. 7. **Final Calculation**: After evaluating the maximum values, we find: \[ \cos \theta_1 + 3\cos \theta_2 \leq 4 \] Thus, the maximum value of \(\cos \theta_1 + 3\cos \theta_2\) is **4**.

To solve the problem, we start with the given condition about the unit vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\): 1. **Given Condition**: \[ |\vec{a} + \vec{b} + 3\vec{c}| = 4 \] Since \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are unit vectors, we have: \[ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If veca and vecb are any two vectors of magnitudes 1and 2. respectivel...

    Text Solution

    |

  2. If veca and vecb are any two vectors of magnitude 2 and 3 respective...

    Text Solution

    |

  3. veca, vecb and vecc are unit vecrtors such that |veca + vecb+ 3vecc|=4...

    Text Solution

    |

  4. If the vector product of a constant vector vec O A with a variable ...

    Text Solution

    |

  5. Let vecu,vecv,vecw be such that |vecu|=1,|vecv|=2,|vecw|3. If the proj...

    Text Solution

    |

  6. If veca,vecb,vecc are non-coplanar vectors and vecu and vecv are any t...

    Text Solution

    |

  7. if vecalpha||(vecbetaxxvecgamma), " then " (vecalphaxxvecgamma) equal ...

    Text Solution

    |

  8. The position vectors of points A,B and C are hati+hatj,hati + 5hatj -h...

    Text Solution

    |

  9. Given three vectors eveca, vecb and vecc two of which are non-collinea...

    Text Solution

    |

  10. If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3ve...

    Text Solution

    |

  11. If in a right-angled triangle A B C , the hypotenuse A B=p ,t h e n...

    Text Solution

    |

  12. Resolved part of vector veca and along vector vecb " is " veca1 and th...

    Text Solution

    |

  13. veca=2hati-hatj+hatk,vecb=hatj+2hatj-hatk,vecc=hati+hatj -2 hatk . A v...

    Text Solution

    |

  14. If P is any arbitary point on the circumcurcle of the equilateral tria...

    Text Solution

    |

  15. If vecr and vecs are non-zero constant vectors and the scalar b is cho...

    Text Solution

    |

  16. veca and vecb are two unit vectors that are mutually perpendicular. A...

    Text Solution

    |

  17. Given that veca,vecb,vecp,vecq are four vectors such that veca + vecb...

    Text Solution

    |

  18. The position vectors of the vertices A, B and C of a triangle are thre...

    Text Solution

    |

  19. If a is real constant A ,Ba n dC are variable angles and sqrt(a^2-4)ta...

    Text Solution

    |

  20. The vertex A triangle A B C is on the line vec r= hat i+ hat j+lambda...

    Text Solution

    |