Home
Class 12
MATHS
If veca,vecb,vecc are non-coplanar vecto...

If `veca,vecb,vecc` are non-coplanar vectors and `vecu` and `vecv` are any two vectors. Prove that `vecuxxvecv=(1)/([vecavecbvecc])|{:(vecu.veca,vecv.veca,veca),(vecu.vecb,vecv.vecb,vecb),(vecu.vecc,vecv.vecc,vecc):}|`

A

`-cos^(-1)(19/(5sqrt43))`

B

`cos^(-1)(19/(5sqrt43))`

C

`picos^(-1)(19/(5sqrt43))`

D

cannot of these

Text Solution

Verified by Experts

The correct Answer is:
b

we have
`vecp.vecq = 0 `
`Rightarrow ( 5veca - 3vecb) . (-veca - 2vecb) =0`
`Rightarrow 6|vecb|^(2) - 5|veca|^(2) = 7 veca. Vecb =0`
Also, `vecr. Vecs=0`
`Rightarrow ( -4veca -vecb) (-veca + vecb) =0`
`Rightarrow 4|veca|^(2) - |vecb|^(2) - 3 veca. vecb= 0`
Now, `vecx,= 1/3 (vecp + vecr +vecs)`
` =1/3 (5 veca - 3vecb -4veca - vecb - veca + vecb)=- vecb`
` and vecy = 1/5 (vecr + vecs) = 1/5 (-5veca) = -veca`
Angle between `vecx and vecy` i.e.
` cos theta = (vecx. vecy)/(|vecx||vecy|) = (veca.vecb)/(|veca||vecb|)`
from (i) and (ii)
`|veca|= sqrt(25/19) sqrt(veca. vecb) and |vecb| = sqrt(43/19) sqrt(veca. vecb)`
`|veca||vecb|= (sqrt(25 xx 43))/ 19 . veca . vecb`
` theta = cos^(-1) (19/ (5 sqrt(43)))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

Show that [veca vecb vecc]\^2=|(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc)|

If veca, vecb, vecc are three given non-coplanar vectors and any arbitrary vector vecr in space, where Delta_(1)=|{:(vecr.veca,vecb.veca,vecc.veca),(vecr.vecb,vecb.vecb,vecc.vecb),(vecr.vecc,vecb.vecc,vecc.vecc):}|,Delta_(2)=|{:(veca.veca,vecr.veca,vecc.veca),(veca.vecb,vecr.vecb,vecc.vecb),(veca.vecc,vecr.vecc ,vecc.vecc):}| Delta_(3)=|{:(veca.veca,vecb.veca,vecr.veca),(veca.vecb,vecb.vecb,vecr.vecb),(veca.vecc,vecb.vecc,vecr.vecc):}|, Delta=|{:(veca.veca,vecb.veca,vecc.veca),(veca.vecb,vecb.vecb,vecc.vecb),(veca.vecc,vecb.vecc,vecc.vecc):}|, "then prove that " vecr=(Delta_(1))/Deltaveca+(Delta_(2))/Deltavecb+(Delta_(3))/Deltavecc

veca , vecb and vecc are three non-coplanar vectors and vecr . Is any arbitrary vector. Prove that [vecbvecc vecr]veca+[vecc veca vecr]vecb+[vecavecbvecr]vecc=[veca vecb vecc]vecr .

If the vectors veca, vecb, and vecc are coplanar show that |(veca,vecb,vecc),(veca.veca, veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|=0

Statement 1: Let vecr be any vector in space. Then, vecr=(vecr.hati)hati+(vecr.hatj)hatj+(vecr.hatk)hatk Statement 2: If veca, vecb, vecc are three non-coplanar vectors and vecr is any vector in space then vecr={([(vecr, vecb, vecc)])/([(veca, vecb, vecc)])}veca+{([(vecr, vecc, veca)])/([(veca, vecb, vecc)])}vecb+{([(vecr, veca, vecb)])/([(veca, vecb, vecc)])}vecc

Let veca,vecb and vecc be a set of non- coplanar vectors and veca'vecb' and vecc' be its reciprocal set. prove that veca=(vecb'xxvecc')/([veca'vecb'vecc']),vecb=(vecc'xxveca')/([veca'vecb'vecc'])andvecc=(veca'xxvecb')/([veca'vecb'vecc'])

If veca,vecb,vecc are coplanar vectors , then show that |{:(veca,vecb,vecc),(veca*veca,veca*vecb,veca*vecc),(vecb*veca,vecb*vecb,vecb*vecc):}|=vec0

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If the vector product of a constant vector vec O A with a variable ...

    Text Solution

    |

  2. Let vecu,vecv,vecw be such that |vecu|=1,|vecv|=2,|vecw|3. If the proj...

    Text Solution

    |

  3. If veca,vecb,vecc are non-coplanar vectors and vecu and vecv are any t...

    Text Solution

    |

  4. if vecalpha||(vecbetaxxvecgamma), " then " (vecalphaxxvecgamma) equal ...

    Text Solution

    |

  5. The position vectors of points A,B and C are hati+hatj,hati + 5hatj -h...

    Text Solution

    |

  6. Given three vectors eveca, vecb and vecc two of which are non-collinea...

    Text Solution

    |

  7. If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3ve...

    Text Solution

    |

  8. If in a right-angled triangle A B C , the hypotenuse A B=p ,t h e n...

    Text Solution

    |

  9. Resolved part of vector veca and along vector vecb " is " veca1 and th...

    Text Solution

    |

  10. veca=2hati-hatj+hatk,vecb=hatj+2hatj-hatk,vecc=hati+hatj -2 hatk . A v...

    Text Solution

    |

  11. If P is any arbitary point on the circumcurcle of the equilateral tria...

    Text Solution

    |

  12. If vecr and vecs are non-zero constant vectors and the scalar b is cho...

    Text Solution

    |

  13. veca and vecb are two unit vectors that are mutually perpendicular. A...

    Text Solution

    |

  14. Given that veca,vecb,vecp,vecq are four vectors such that veca + vecb...

    Text Solution

    |

  15. The position vectors of the vertices A, B and C of a triangle are thre...

    Text Solution

    |

  16. If a is real constant A ,Ba n dC are variable angles and sqrt(a^2-4)ta...

    Text Solution

    |

  17. The vertex A triangle A B C is on the line vec r= hat i+ hat j+lambda...

    Text Solution

    |

  18. A non-zero vecto veca is such tha its projections along vectors (hati ...

    Text Solution

    |

  19. Position vector hatk is rotated about the origin by angle 135^(@) in ...

    Text Solution

    |

  20. In a quadrilateral A B C D , vec A C is the bisector of vec A Ba n d ...

    Text Solution

    |