Home
Class 12
MATHS
If in a right-angled triangle A B C ,...

If in a right-angled triangle `A B C ,` the hypotenuse `A B=p ,t h e n vec A BdotA C+ vec B Cdot vec B A+ vec C Adot vec C B` is equal to `2p^2` b. `(p^2)/2` c. `p^2` d. none of these

A

`2p^(2)`

B

`p^(2)/2`

C

`p^(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \vec{AB} \cdot \vec{AC} + \vec{BC} \cdot \vec{BA} + \vec{CA} \cdot \vec{CB} \) in the context of a right-angled triangle \( ABC \) where \( AB = p \). ### Step-by-step Solution: 1. **Identify the Vectors**: - Let \( \vec{AB} \) be the hypotenuse, which is given as \( p \). - The vectors can be represented as: - \( \vec{AB} \) from point \( A \) to point \( B \) - \( \vec{AC} \) from point \( A \) to point \( C \) - \( \vec{BC} \) from point \( B \) to point \( C \) - \( \vec{BA} \) from point \( B \) to point \( A \) - \( \vec{CA} \) from point \( C \) to point \( A \) - \( \vec{CB} \) from point \( C \) to point \( B \) 2. **Use the Right-Angle Property**: - In triangle \( ABC \), since \( C \) is the right angle, the vectors \( \vec{CA} \) and \( \vec{CB} \) are perpendicular. - Therefore, \( \vec{CA} \cdot \vec{CB} = 0 \). 3. **Rewrite the Expression**: - The expression simplifies to: \[ \vec{AB} \cdot \vec{AC} + \vec{BC} \cdot \vec{BA} + 0 \] - This can be rewritten as: \[ \vec{AB} \cdot \vec{AC} + \vec{BC} \cdot (-\vec{AB}) \] - This gives: \[ \vec{AB} \cdot \vec{AC} - \vec{BC} \cdot \vec{AB} \] 4. **Substitute \( \vec{BC} \)**: - We know \( \vec{BC} = -\vec{CB} \), so we can substitute: \[ \vec{AB} \cdot \vec{AC} + \vec{AB} \cdot \vec{CB} \] 5. **Factor Out \( \vec{AB} \)**: - Factor out \( \vec{AB} \): \[ \vec{AB} \cdot (\vec{AC} + \vec{CB}) \] 6. **Use Triangle Properties**: - Since \( \vec{AC} + \vec{CB} = \vec{AB} \), we can substitute: \[ \vec{AB} \cdot \vec{AB} \] 7. **Calculate the Dot Product**: - The dot product \( \vec{AB} \cdot \vec{AB} \) is equal to the magnitude squared of \( \vec{AB} \): \[ |\vec{AB}|^2 = p^2 \] ### Final Result: Thus, the value of the expression \( \vec{AB} \cdot \vec{AC} + \vec{BC} \cdot \vec{BA} + \vec{CA} \cdot \vec{CB} \) is equal to \( p^2 \). ### Answer: c. \( p^2 \)

To solve the problem, we need to evaluate the expression \( \vec{AB} \cdot \vec{AC} + \vec{BC} \cdot \vec{BA} + \vec{CA} \cdot \vec{CB} \) in the context of a right-angled triangle \( ABC \) where \( AB = p \). ### Step-by-step Solution: 1. **Identify the Vectors**: - Let \( \vec{AB} \) be the hypotenuse, which is given as \( p \). - The vectors can be represented as: - \( \vec{AB} \) from point \( A \) to point \( B \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. Given three vectors eveca, vecb and vecc two of which are non-collinea...

    Text Solution

    |

  2. If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3ve...

    Text Solution

    |

  3. If in a right-angled triangle A B C , the hypotenuse A B=p ,t h e n...

    Text Solution

    |

  4. Resolved part of vector veca and along vector vecb " is " veca1 and th...

    Text Solution

    |

  5. veca=2hati-hatj+hatk,vecb=hatj+2hatj-hatk,vecc=hati+hatj -2 hatk . A v...

    Text Solution

    |

  6. If P is any arbitary point on the circumcurcle of the equilateral tria...

    Text Solution

    |

  7. If vecr and vecs are non-zero constant vectors and the scalar b is cho...

    Text Solution

    |

  8. veca and vecb are two unit vectors that are mutually perpendicular. A...

    Text Solution

    |

  9. Given that veca,vecb,vecp,vecq are four vectors such that veca + vecb...

    Text Solution

    |

  10. The position vectors of the vertices A, B and C of a triangle are thre...

    Text Solution

    |

  11. If a is real constant A ,Ba n dC are variable angles and sqrt(a^2-4)ta...

    Text Solution

    |

  12. The vertex A triangle A B C is on the line vec r= hat i+ hat j+lambda...

    Text Solution

    |

  13. A non-zero vecto veca is such tha its projections along vectors (hati ...

    Text Solution

    |

  14. Position vector hatk is rotated about the origin by angle 135^(@) in ...

    Text Solution

    |

  15. In a quadrilateral A B C D , vec A C is the bisector of vec A Ba n d ...

    Text Solution

    |

  16. In AB, DE and GF are parallel to each other and AD, BG and EF ar para...

    Text Solution

    |

  17. Vectors hata in the plane of vecb = 2 hati +hatj and vecc = hati-hatj ...

    Text Solution

    |

  18. Let A B C D be a tetrahedron such that the edges A B ,A Ca n dA D ar...

    Text Solution

    |

  19. Let vecf(t)=[t] hat i+(t-[t]) hat j+[t+1] hat k , w h e r e[dot] deno...

    Text Solution

    |

  20. If veca is parallel to vecb xx vecc, then (veca xx vecb) .(veca xx vec...

    Text Solution

    |