Home
Class 12
MATHS
Vectors hata in the plane of vecb = 2 ha...

Vectors `hata` in the plane of `vecb = 2 hati +hatj and vecc = hati-hatj + hatk` is such that it is equally inclined to `vecb and vecd " where " vecd= hatj + 2hatk ` the value of `hata ` is (a) `(hati+hatj+hatk)/sqrt3` (b) `(hati-hatj+hatk)/sqrt3` (c) `( 2 hati + hatj)/sqrt5` (d) `( 2 hati + hatj)/sqrt5`

A

`(hati+hatj+hatk)/sqrt3`

B

`(hati-hatj+hatk)/sqrt3`

C

`( 2 hati + hatj)/sqrt5`

D

`( 2 hati + hatj)/sqrt5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the vector \( \hat{a} \) that is in the plane of vectors \( \vec{b} \) and \( \vec{c} \), and is equally inclined to vectors \( \vec{b} \) and \( \vec{d} \). ### Step 1: Define the Vectors Given: - \( \vec{b} = 2 \hat{i} + \hat{j} \) - \( \vec{c} = \hat{i} - \hat{j} + \hat{k} \) - \( \vec{d} = \hat{j} + 2 \hat{k} \) ### Step 2: Express \( \hat{a} \) in terms of \( \vec{b} \) and \( \vec{c} \) Since \( \hat{a} \) lies in the plane of \( \vec{b} \) and \( \vec{c} \), we can express \( \hat{a} \) as a linear combination of \( \vec{b} \) and \( \vec{c} \): \[ \hat{a} = \lambda \vec{b} + \mu \vec{c} \] Substituting the values of \( \vec{b} \) and \( \vec{c} \): \[ \hat{a} = \lambda (2 \hat{i} + \hat{j}) + \mu (\hat{i} - \hat{j} + \hat{k}) \] \[ = (2\lambda + \mu) \hat{i} + (\lambda - \mu) \hat{j} + \mu \hat{k} \] ### Step 3: Condition for Equal Inclination The condition for \( \hat{a} \) to be equally inclined to \( \vec{b} \) and \( \vec{d} \) can be expressed using the dot product: \[ \frac{\hat{a} \cdot \vec{b}}{|\hat{a}| |\vec{b}|} = \frac{\hat{a} \cdot \vec{d}}{|\hat{a}| |\vec{d}|} \] This implies: \[ \hat{a} \cdot \vec{b} = k \hat{a} \cdot \vec{d} \] for some scalar \( k \). ### Step 4: Calculate the Dot Products First, we need to calculate \( |\vec{b}| \) and \( |\vec{d}| \): \[ |\vec{b}| = \sqrt{(2^2 + 1^2)} = \sqrt{4 + 1} = \sqrt{5} \] \[ |\vec{d}| = \sqrt{(1^2 + 2^2)} = \sqrt{1 + 4} = \sqrt{5} \] Now calculate \( \hat{a} \cdot \vec{b} \): \[ \hat{a} \cdot \vec{b} = (2\lambda + \mu)(2) + (\lambda - \mu)(1) = 4\lambda + 2\mu + \lambda - \mu = 5\lambda + \mu \] Now calculate \( \hat{a} \cdot \vec{d} \): \[ \hat{a} \cdot \vec{d} = (2\lambda + \mu)(0) + (\lambda - \mu)(1) + \mu(2) = \lambda - \mu + 2\mu = \lambda + \mu \] ### Step 5: Set Up the Equation Setting the two dot products equal gives: \[ 5\lambda + \mu = k(\lambda + \mu) \] Since \( |\hat{a}| \) cancels out, we can simplify this equation. ### Step 6: Solve for \( \lambda \) and \( \mu \) We can rearrange the equation: \[ 5\lambda + \mu = k\lambda + k\mu \] Rearranging gives: \[ (5 - k)\lambda + (1 - k)\mu = 0 \] This implies that either \( \lambda = 0 \) or \( \mu \) can be expressed in terms of \( \lambda \). ### Step 7: Find the Unit Vector Assuming \( \lambda = 0 \), we have: \[ \hat{a} = \mu(\hat{i} - \hat{j} + \hat{k}) \] To find the unit vector, we calculate the magnitude: \[ |\hat{a}| = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{3} \] Thus, \[ \hat{a} = \frac{\mu}{\sqrt{3}}(\hat{i} - \hat{j} + \hat{k}) \] Choosing \( \mu = 1 \), we have: \[ \hat{a} = \frac{1}{\sqrt{3}}(\hat{i} - \hat{j} + \hat{k}) \] ### Final Step: Check Options Comparing with the options given: - (a) \( \frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}} \) - (b) \( \frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}} \) - (c) \( \frac{2 \hat{i} + \hat{j}}{\sqrt{5}} \) - (d) \( \frac{2 \hat{i} + \hat{j}}{\sqrt{5}} \) The correct answer is: **(b) \( \frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}} \)**

To solve the problem step by step, we need to find the vector \( \hat{a} \) that is in the plane of vectors \( \vec{b} \) and \( \vec{c} \), and is equally inclined to vectors \( \vec{b} \) and \( \vec{d} \). ### Step 1: Define the Vectors Given: - \( \vec{b} = 2 \hat{i} + \hat{j} \) - \( \vec{c} = \hat{i} - \hat{j} + \hat{k} \) - \( \vec{d} = \hat{j} + 2 \hat{k} \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

A unit vector veca in the plane of vecb=2hati+hatj and vecc=hati-hatj+hatk is such that angle between veca and vecd is same as angle between veca and vecb where vecd=vecj+2veck . Then veca is

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

Find the scalar product of vectors veca=2hati-hatj+2hatk and vecb=hati-3hatj-5hatk

The vector (s) equally inclined to the vectors hati-hatj+hatk and hati+hatj-hatk in the plane containing them is (are_ (A) (hati+hatj+hatk)/sqrt(3) (B) hati (C) hati+hatk (D) hati-hatk

The unit vector which is orthogonal to the vector 5hati + 2hatj + 6hatk and is coplanar with vectors 2hati + hatj + hatk and hati - hatj + hatk is (a) (2hati - 6hatj + hatk)/sqrt41 (b) (2hati-3hatj)/sqrt13 (c) (3 hatj -hatk)/sqrt10 (d) (4hati + 3hatj - 3hatk)/sqrt34

The projection of vector veca=2hati+3hatj+2hatk along vecb=hati+2hatj+1hatk is

find vecA xx vecB if vecA = hati - 2 hatj + 4 hatk and vecB = 3 hati - hatj + 2hatk

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

If vecA 2 hati +hatj -hatk, vecB=hati +2hatj +3hatk, vecC=6hati -2hatj-6hatk angle between (vecA+vecB) and vecC will be

Find the projection oif veca=2hati+3hatj+2hatk on the vector vecb=hati+2hatj+hatk .

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. In a quadrilateral A B C D , vec A C is the bisector of vec A Ba n d ...

    Text Solution

    |

  2. In AB, DE and GF are parallel to each other and AD, BG and EF ar para...

    Text Solution

    |

  3. Vectors hata in the plane of vecb = 2 hati +hatj and vecc = hati-hatj ...

    Text Solution

    |

  4. Let A B C D be a tetrahedron such that the edges A B ,A Ca n dA D ar...

    Text Solution

    |

  5. Let vecf(t)=[t] hat i+(t-[t]) hat j+[t+1] hat k , w h e r e[dot] deno...

    Text Solution

    |

  6. If veca is parallel to vecb xx vecc, then (veca xx vecb) .(veca xx vec...

    Text Solution

    |

  7. The three vectors hat i+hat j,hat j+hat k, hat k+hat i taken two at a ...

    Text Solution

    |

  8. If vecd=vecaxxvecb+vecbxxvecc+vecc+veccxxveca is a non- zero vector an...

    Text Solution

    |

  9. If |veca|=2 and |vecb|=3 and veca.vecb=0, " then " (vecaxx(vecaxx(veca...

    Text Solution

    |

  10. If two diagonals of one of its faces are 6hati + 6 hatk and 4 hatj + ...

    Text Solution

    |

  11. The volume of a tetrahedron fomed by the coterminus edges veca , vecb ...

    Text Solution

    |

  12. If veca ,vecb and vecc are three mutually orthogonal unit vectors , th...

    Text Solution

    |

  13. vector vecc are perpendicular to vectors veca= (2,-3,1) and vecb= (1,...

    Text Solution

    |

  14. Given veca=xhati+yhatj+2hatk,vecb=hati-hatj+hatk , vecc=hati+2hatj, ve...

    Text Solution

    |

  15. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(1)hati+b(2)hatj+b(3)hatk an...

    Text Solution

    |

  16. Let vecr, veca, vecb and vecc be four non-zero vectors such that vecr....

    Text Solution

    |

  17. If veca, vecb and vecc are such that [veca \ vecb \ vecc] =1, vecc= la...

    Text Solution

    |

  18. If 4veca+5vecb+9vecc=0 " then " (vecaxxvecb)xx[(vecbxxvecc)xx(veccxxve...

    Text Solution

    |

  19. Value of [vec a xx vec b,vec a xx vecc,vec d] is always equal to (a) ...

    Text Solution

    |

  20. Let hata and hatb be mutually perpendicular unit vectors. Then for an...

    Text Solution

    |