Home
Class 12
MATHS
If veca is parallel to vecb xx vecc, the...

If `veca` is parallel to `vecb xx vecc, then (veca xx vecb) .(veca xx vecc) ` is equal to (a) `|veca|^(2)(vecb.vecc)` (b) `|vecb|^(2)(veca .vecc)` (c) `|vecc|^(2)(veca.vecb)` (d) none of these

A

`|veca|^(2)(vecb.vecc)`

B

`|vecb|^(2)(veca .vecc)`

C

`|vecc|^(2)(veca.vecb)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given information and apply vector identities. Let's go through the steps systematically. ### Step 1: Understand the given condition We are given that \(\vec{a}\) is parallel to \(\vec{b} \times \vec{c}\). This means we can express \(\vec{a}\) as: \[ \vec{a} = \lambda (\vec{b} \times \vec{c}) \] for some scalar \(\lambda\). **Hint:** Recognize that parallel vectors can be expressed as scalar multiples of each other. ### Step 2: Set up the expression to evaluate We need to evaluate \((\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{c})\). **Hint:** Recall the vector triple product identity: \(\vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z}\). ### Step 3: Use the vector triple product identity Let \(\vec{u} = \vec{a} \times \vec{c}\). Then, we can rewrite the expression: \[ (\vec{a} \times \vec{b}) \cdot \vec{u} = \vec{a} \cdot (\vec{b} \times \vec{u}) \] where \(\vec{u} = \vec{a} \times \vec{c}\). **Hint:** This step simplifies the expression using the properties of the dot and cross products. ### Step 4: Expand using the triple product identity Using the identity, we have: \[ \vec{b} \times \vec{u} = \vec{b} \times (\vec{a} \times \vec{c}) = (\vec{b} \cdot \vec{c}) \vec{a} - (\vec{b} \cdot \vec{a}) \vec{c} \] **Hint:** Substitute \(\vec{u}\) back into the expression to evaluate the dot product. ### Step 5: Substitute and simplify Now, substituting back, we get: \[ \vec{a} \cdot \left((\vec{b} \cdot \vec{c}) \vec{a} - (\vec{b} \cdot \vec{a}) \vec{c}\right) \] This simplifies to: \[ (\vec{b} \cdot \vec{c}) (\vec{a} \cdot \vec{a}) - (\vec{b} \cdot \vec{a})(\vec{a} \cdot \vec{c}) \] **Hint:** Remember that \(\vec{a} \cdot \vec{a} = |\vec{a}|^2\). ### Step 6: Use the fact that \(\vec{a}\) is parallel to \(\vec{b} \times \vec{c}\) Since \(\vec{a}\) is parallel to \(\vec{b} \times \vec{c}\), we have \(\vec{a} \cdot \vec{b} = 0\). Therefore, the second term becomes zero: \[ (\vec{b} \cdot \vec{c}) |\vec{a}|^2 \] **Hint:** Recognize that the dot product being zero simplifies the expression significantly. ### Step 7: Final result Thus, we conclude that: \[ (\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{c}) = |\vec{a}|^2 (\vec{b} \cdot \vec{c}) \] This matches option (a): \[ |\vec{a}|^2 (\vec{b} \cdot \vec{c}) \] ### Conclusion The correct answer is: **(a) \(|\vec{a}|^2 (\vec{b} \cdot \vec{c})\)**

To solve the problem, we need to analyze the given information and apply vector identities. Let's go through the steps systematically. ### Step 1: Understand the given condition We are given that \(\vec{a}\) is parallel to \(\vec{b} \times \vec{c}\). This means we can express \(\vec{a}\) as: \[ \vec{a} = \lambda (\vec{b} \times \vec{c}) \] for some scalar \(\lambda\). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. Let A B C D be a tetrahedron such that the edges A B ,A Ca n dA D ar...

    Text Solution

    |

  2. Let vecf(t)=[t] hat i+(t-[t]) hat j+[t+1] hat k , w h e r e[dot] deno...

    Text Solution

    |

  3. If veca is parallel to vecb xx vecc, then (veca xx vecb) .(veca xx vec...

    Text Solution

    |

  4. The three vectors hat i+hat j,hat j+hat k, hat k+hat i taken two at a ...

    Text Solution

    |

  5. If vecd=vecaxxvecb+vecbxxvecc+vecc+veccxxveca is a non- zero vector an...

    Text Solution

    |

  6. If |veca|=2 and |vecb|=3 and veca.vecb=0, " then " (vecaxx(vecaxx(veca...

    Text Solution

    |

  7. If two diagonals of one of its faces are 6hati + 6 hatk and 4 hatj + ...

    Text Solution

    |

  8. The volume of a tetrahedron fomed by the coterminus edges veca , vecb ...

    Text Solution

    |

  9. If veca ,vecb and vecc are three mutually orthogonal unit vectors , th...

    Text Solution

    |

  10. vector vecc are perpendicular to vectors veca= (2,-3,1) and vecb= (1,...

    Text Solution

    |

  11. Given veca=xhati+yhatj+2hatk,vecb=hati-hatj+hatk , vecc=hati+2hatj, ve...

    Text Solution

    |

  12. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(1)hati+b(2)hatj+b(3)hatk an...

    Text Solution

    |

  13. Let vecr, veca, vecb and vecc be four non-zero vectors such that vecr....

    Text Solution

    |

  14. If veca, vecb and vecc are such that [veca \ vecb \ vecc] =1, vecc= la...

    Text Solution

    |

  15. If 4veca+5vecb+9vecc=0 " then " (vecaxxvecb)xx[(vecbxxvecc)xx(veccxxve...

    Text Solution

    |

  16. Value of [vec a xx vec b,vec a xx vecc,vec d] is always equal to (a) ...

    Text Solution

    |

  17. Let hata and hatb be mutually perpendicular unit vectors. Then for an...

    Text Solution

    |

  18. Let veca and vecb be unit vectors that are perpendicular to each other...

    Text Solution

    |

  19. veca and vecb are two vectors such that |veca|=1 ,|vecb|=4 and veca. V...

    Text Solution

    |

  20. If vecb and vecc are unit vectors, then for any arbitary vector veca,...

    Text Solution

    |