Home
Class 12
MATHS
Given veca=xhati+yhatj+2hatk,vecb=hati-h...

Given `veca=xhati+yhatj+2hatk,vecb=hati-hatj+hatk , vecc=hati+2hatj, veca botvecb,veca.vecc=4` then find the value of `[(veca, vecb, vecc)]`.

A

`[vecavecbvecc]^(2)=|veca|`

B

`[vecavecbvecc]=|veca|`

C

`[vecavecbvecc]=0`

D

`[vecavecbvecc]=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, let's break it down: ### Given: - \(\vec{a} = x \hat{i} + y \hat{j} + 2 \hat{k}\) - \(\vec{b} = \hat{i} - \hat{j} + \hat{k}\) - \(\vec{c} = \hat{i} + 2 \hat{j}\) - \(\vec{a} \perp \vec{b}\) (which means \(\vec{a} \cdot \vec{b} = 0\)) - \(\vec{a} \cdot \vec{c} = 4\) ### Step 1: Find the dot product \(\vec{a} \cdot \vec{b}\) Since \(\vec{a} \perp \vec{b}\), we have: \[ \vec{a} \cdot \vec{b} = 0 \] Calculating the dot product: \[ \vec{a} \cdot \vec{b} = (x \hat{i} + y \hat{j} + 2 \hat{k}) \cdot (\hat{i} - \hat{j} + \hat{k}) = x(1) + y(-1) + 2(1) \] This simplifies to: \[ x - y + 2 = 0 \quad \text{(1)} \] ### Step 2: Find the dot product \(\vec{a} \cdot \vec{c}\) We also know: \[ \vec{a} \cdot \vec{c} = 4 \] Calculating this dot product: \[ \vec{a} \cdot \vec{c} = (x \hat{i} + y \hat{j} + 2 \hat{k}) \cdot (\hat{i} + 2 \hat{j}) = x(1) + y(2) + 2(0) \] This simplifies to: \[ x + 2y = 4 \quad \text{(2)} \] ### Step 3: Solve the system of equations Now we have two equations: 1. \(x - y + 2 = 0\) 2. \(x + 2y = 4\) From equation (1): \[ x - y = -2 \implies x = y - 2 \quad \text{(3)} \] Substituting (3) into (2): \[ (y - 2) + 2y = 4 \] This simplifies to: \[ 3y - 2 = 4 \] \[ 3y = 6 \implies y = 2 \] Substituting \(y = 2\) back into (3): \[ x = 2 - 2 = 0 \] ### Step 4: Substitute values back into \(\vec{a}\) Now substituting \(x\) and \(y\) back into \(\vec{a}\): \[ \vec{a} = 0 \hat{i} + 2 \hat{j} + 2 \hat{k} = 2 \hat{j} + 2 \hat{k} \] ### Step 5: Find the scalar triple product \([\vec{a}, \vec{b}, \vec{c}]\) The scalar triple product can be calculated using the determinant: \[ [\vec{a}, \vec{b}, \vec{c}] = \begin{vmatrix} 0 & 2 & 2 \\ 1 & -1 & 1 \\ 1 & 2 & 0 \end{vmatrix} \] Calculating the determinant: \[ = 0 \cdot \begin{vmatrix} -1 & 1 \\ 2 & 0 \end{vmatrix} - 2 \cdot \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} + 2 \cdot \begin{vmatrix} 1 & -1 \\ 1 & 2 \end{vmatrix} \] Calculating the 2x2 determinants: \[ = 0 - 2(1 \cdot 0 - 1 \cdot 1) + 2(1 \cdot 2 - (-1) \cdot 1) \] \[ = 0 - 2(-1) + 2(2 + 1) \] \[ = 0 + 2 + 2 \cdot 3 = 2 + 6 = 8 \] ### Final Answer: The value of \([\vec{a}, \vec{b}, \vec{c}] = 8\).

To solve the problem step by step, let's break it down: ### Given: - \(\vec{a} = x \hat{i} + y \hat{j} + 2 \hat{k}\) - \(\vec{b} = \hat{i} - \hat{j} + \hat{k}\) - \(\vec{c} = \hat{i} + 2 \hat{j}\) - \(\vec{a} \perp \vec{b}\) (which means \(\vec{a} \cdot \vec{b} = 0\)) - \(\vec{a} \cdot \vec{c} = 4\) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If veca ,vecb and vecc are three mutually orthogonal unit vectors , th...

    Text Solution

    |

  2. vector vecc are perpendicular to vectors veca= (2,-3,1) and vecb= (1,...

    Text Solution

    |

  3. Given veca=xhati+yhatj+2hatk,vecb=hati-hatj+hatk , vecc=hati+2hatj, ve...

    Text Solution

    |

  4. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(1)hati+b(2)hatj+b(3)hatk an...

    Text Solution

    |

  5. Let vecr, veca, vecb and vecc be four non-zero vectors such that vecr....

    Text Solution

    |

  6. If veca, vecb and vecc are such that [veca \ vecb \ vecc] =1, vecc= la...

    Text Solution

    |

  7. If 4veca+5vecb+9vecc=0 " then " (vecaxxvecb)xx[(vecbxxvecc)xx(veccxxve...

    Text Solution

    |

  8. Value of [vec a xx vec b,vec a xx vecc,vec d] is always equal to (a) ...

    Text Solution

    |

  9. Let hata and hatb be mutually perpendicular unit vectors. Then for an...

    Text Solution

    |

  10. Let veca and vecb be unit vectors that are perpendicular to each other...

    Text Solution

    |

  11. veca and vecb are two vectors such that |veca|=1 ,|vecb|=4 and veca. V...

    Text Solution

    |

  12. If vecb and vecc are unit vectors, then for any arbitary vector veca,...

    Text Solution

    |

  13. If veca .vecb =beta and veca xx vecb = vecc ," then " vecb is

    Text Solution

    |

  14. If a(vecalpha xx vecbeta)xx(vecbetaxxvecgamma)+c(vecgammaxxvecalpha)=0...

    Text Solution

    |

  15. If (vecaxxvecb)xx(vecbxxvecc)=vecb, where veca,vecb and vecc are non z...

    Text Solution

    |

  16. If vecr.veca=vecr.vecb=vecr.vecc=1/2 for some non zero vector vecr and...

    Text Solution

    |

  17. A vector of magnitude 10 along the normal to the curve 3x^2+8x y+2y^...

    Text Solution

    |

  18. If veca and vecb are two unit vectors inclined at an angle pi/3 then {...

    Text Solution

    |

  19. If veca and vecb are othogonal unit vectors, then for a vector vecr no...

    Text Solution

    |

  20. If veca+vecb ,vecc are any three non- coplanar vectors then the equa...

    Text Solution

    |