Home
Class 12
MATHS
Value of [vec a xx vec b,vec a xx vecc,v...

Value of `[vec a xx vec b,vec a xx vecc,vec d]` is always equal to (a) ( ⃗ a . ⃗ d ) [ ⃗ a ⃗ b ⃗ c ] (b) ( ⃗ a . ⃗ c ) [ ⃗ a ⃗ b ⃗ d ] (c) ( ⃗ a . ⃗ b ) [ ⃗ a ⃗ b ⃗ d ] (d) none of these

A

`(veca.vecd) [vecavecbvecc]`

B

`(veca.vecc)[veca vecb vecd]

C

`(veca.vecb)[veca vecb vecd]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \([ \vec{a} \times \vec{b}, \vec{a} \times \vec{c}, \vec{d} ]\) and determine its value. ### Step-by-Step Solution: 1. **Understanding the Expression**: The expression \([ \vec{a} \times \vec{b}, \vec{a} \times \vec{c}, \vec{d} ]\) represents the scalar triple product of three vectors: \(\vec{a} \times \vec{b}\), \(\vec{a} \times \vec{c}\), and \(\vec{d}\). 2. **Using the Scalar Triple Product Property**: The scalar triple product can be expressed as: \[ [\vec{u}, \vec{v}, \vec{w}] = \vec{u} \cdot (\vec{v} \times \vec{w}) \] In our case, we can rewrite the expression as: \[ [ \vec{a} \times \vec{b}, \vec{a} \times \vec{c}, \vec{d} ] = \vec{d} \cdot ((\vec{a} \times \vec{b}) \times (\vec{a} \times \vec{c})) \] 3. **Applying the Vector Triple Product Identity**: We can use the vector triple product identity: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] Let \(\vec{x} = \vec{a}\), \(\vec{y} = \vec{b}\), and \(\vec{z} = \vec{c}\). Thus, we have: \[ (\vec{a} \times \vec{b}) \times (\vec{a} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \] 4. **Substituting Back**: Now substituting this back into our expression gives: \[ [ \vec{a} \times \vec{b}, \vec{a} \times \vec{c}, \vec{d} ] = \vec{d} \cdot \left( (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \right) \] 5. **Distributing the Dot Product**: Distributing the dot product, we have: \[ [ \vec{a} \times \vec{b}, \vec{a} \times \vec{c}, \vec{d} ] = (\vec{a} \cdot \vec{c})(\vec{d} \cdot \vec{b}) - (\vec{a} \cdot \vec{b})(\vec{d} \cdot \vec{c}) \] 6. **Identifying the Options**: Now we can analyze the options given in the question: - (a) \((\vec{a} \cdot \vec{d})[\vec{a} \vec{b} \vec{c}]\) - (b) \((\vec{a} \cdot \vec{c})[\vec{a} \vec{b} \vec{d}]\) - (c) \((\vec{a} \cdot \vec{b})[\vec{a} \vec{b} \vec{d}]\) - (d) none of these The expression we derived does not match any of the options directly, thus the answer is **(d) none of these**.

To solve the problem, we need to evaluate the expression \([ \vec{a} \times \vec{b}, \vec{a} \times \vec{c}, \vec{d} ]\) and determine its value. ### Step-by-Step Solution: 1. **Understanding the Expression**: The expression \([ \vec{a} \times \vec{b}, \vec{a} \times \vec{c}, \vec{d} ]\) represents the scalar triple product of three vectors: \(\vec{a} \times \vec{b}\), \(\vec{a} \times \vec{c}\), and \(\vec{d}\). 2. **Using the Scalar Triple Product Property**: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

Value of [ vec axx vec b vec axx vec c vec d] is always equal to ( vec adot vec d)[ vec a vec b vec c] b. ( vec adot vec c)[ vec a vec b vec d] c. ( vec adot vec b)[ vec a vec b vec d] d. none of these

Prove that [ vec a , vec b , vec c+ vec d]=[ vec a , vec b , vec c]+[ vec a , vec b , vec d]

Let vec a , vec ba n d vec c be three non-coplanar vecrors and vec r be any arbitrary vector. Then ( vec axx vec b)xx( vec rxx vec c)+( vec bxx vec c)xx( vec rxx vec a)+( vec cxx vec a)xx( vec rxx vec b) is always equal to [ vec a vec b vec c] vec r b. 2[ vec a vec b vec c] vec r c. 3[ vec a vec b vec c] vec r d. none of these

If vec a+vec b+vec c=0 , prove that (vec a xx vec b)=(vec b xx vec c)=(vec c xx vec a)

If vec a is parallel to vec bxx vec c , then ( vec axx vec b)dot( vec axx vec c) is equal to | vec a|^2( vec bdot vec c) b. | vec b|^2( vec adot vec c) c. | vec c|^2( vec adot vec b) d. none of these

Let vec aa n d vec b be unit vectors that are perpendicular to each other. Then [ vec a+( vec axx vec b) vec b+( vec axx vec b) vec axx vec b] will always be equal to 1 b. 0 c. -1 d. none of these

If vec a= vec b+ vec c , vec b X vecd= vec0 and vec c*vec d=0 then ( vec dx( vec ax vec d))/( vec d^2) is equal to (a) vec a (b) vec b (c) vec c (d) vec d

If 4 vec a+5 vec b+9 vec c=0, then ( vec axx vec b)xx[( vec bxx vec c)xx( vec cxx vec a)] is equal to a vector perpendicular to the plane of a ,b ,c b. a scalar quantity c. vec0 d. none of these

If vec axx vec b= vec cxx vec da n d vec axx vec c= vec bxx vec d , then show that vec a- vec d , is paralelto vec b- vec c

Let vec r , vec a , vec ba n d vec c be four nonzero vectors such that vec rdot vec a=0,| vec rxx vec b|=| vec r|| vec b|a n d| vec rxx vec c|=| vec r|| vec c|dot Then [abc] is equal to |a||b||c| b. -|a||b||c| c. 0 d. none of these

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If veca, vecb and vecc are such that [veca \ vecb \ vecc] =1, vecc= la...

    Text Solution

    |

  2. If 4veca+5vecb+9vecc=0 " then " (vecaxxvecb)xx[(vecbxxvecc)xx(veccxxve...

    Text Solution

    |

  3. Value of [vec a xx vec b,vec a xx vecc,vec d] is always equal to (a) ...

    Text Solution

    |

  4. Let hata and hatb be mutually perpendicular unit vectors. Then for an...

    Text Solution

    |

  5. Let veca and vecb be unit vectors that are perpendicular to each other...

    Text Solution

    |

  6. veca and vecb are two vectors such that |veca|=1 ,|vecb|=4 and veca. V...

    Text Solution

    |

  7. If vecb and vecc are unit vectors, then for any arbitary vector veca,...

    Text Solution

    |

  8. If veca .vecb =beta and veca xx vecb = vecc ," then " vecb is

    Text Solution

    |

  9. If a(vecalpha xx vecbeta)xx(vecbetaxxvecgamma)+c(vecgammaxxvecalpha)=0...

    Text Solution

    |

  10. If (vecaxxvecb)xx(vecbxxvecc)=vecb, where veca,vecb and vecc are non z...

    Text Solution

    |

  11. If vecr.veca=vecr.vecb=vecr.vecc=1/2 for some non zero vector vecr and...

    Text Solution

    |

  12. A vector of magnitude 10 along the normal to the curve 3x^2+8x y+2y^...

    Text Solution

    |

  13. If veca and vecb are two unit vectors inclined at an angle pi/3 then {...

    Text Solution

    |

  14. If veca and vecb are othogonal unit vectors, then for a vector vecr no...

    Text Solution

    |

  15. If veca+vecb ,vecc are any three non- coplanar vectors then the equa...

    Text Solution

    |

  16. Sholve the simultasneous vector equations for vecx and vecy: vecx+vecc...

    Text Solution

    |

  17. The condition for equations vecrxxveca = vecb and vecr xx vecc = vecd ...

    Text Solution

    |

  18. If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2h...

    Text Solution

    |

  19. If veca=2hati + hatj+ hatk, vecb= hati+ 2hatj + 2hatk,vecc = hati+ hat...

    Text Solution

    |

  20. Let (veca (x) = (sin x) hati+ (cos x) hatj and vecb(x) = (cos 2x) hati...

    Text Solution

    |