Home
Class 12
MATHS
If veca=2hati+3hatj+hatk, vecb=hati-2hat...

If `veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk` and `vecc=-3hati+hatj+2hatk`, then `[veca vecb vecc]=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the scalar triple product of the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). The scalar triple product can be calculated using the formula: \[ [\vec{a} \, \vec{b} \, \vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c}) \] ### Step 1: Define the vectors Given: \[ \vec{a} = 2\hat{i} + 3\hat{j} + \hat{k} \] \[ \vec{b} = \hat{i} - 2\hat{j} + \hat{k} \] \[ \vec{c} = -3\hat{i} + \hat{j} + 2\hat{k} \] ### Step 2: Calculate \(\vec{b} \times \vec{c}\) To find \(\vec{b} \times \vec{c}\), we can use the determinant of a matrix formed by the unit vectors \(\hat{i}\), \(\hat{j}\), \(\hat{k}\) and the components of \(\vec{b}\) and \(\vec{c}\): \[ \vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 1 \\ -3 & 1 & 2 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} -2 & 1 \\ 1 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ -3 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -2 \\ -3 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} -2 & 1 \\ 1 & 2 \end{vmatrix} = (-2)(2) - (1)(1) = -4 - 1 = -5\) 2. \(\begin{vmatrix} 1 & 1 \\ -3 & 2 \end{vmatrix} = (1)(2) - (1)(-3) = 2 + 3 = 5\) 3. \(\begin{vmatrix} 1 & -2 \\ -3 & 1 \end{vmatrix} = (1)(1) - (-2)(-3) = 1 - 6 = -5\) Putting it all together: \[ \vec{b} \times \vec{c} = -5\hat{i} - 5\hat{j} - 5\hat{k} = -5(\hat{i} + \hat{j} + \hat{k}) \] ### Step 3: Calculate \(\vec{a} \cdot (\vec{b} \times \vec{c})\) Now we calculate \(\vec{a} \cdot (\vec{b} \times \vec{c})\): \[ \vec{a} \cdot (\vec{b} \times \vec{c}) = (2\hat{i} + 3\hat{j} + \hat{k}) \cdot (-5\hat{i} - 5\hat{j} - 5\hat{k}) \] Calculating the dot product: \[ = 2(-5) + 3(-5) + 1(-5) = -10 - 15 - 5 = -30 \] ### Conclusion Thus, the scalar triple product \([\vec{a} \, \vec{b} \, \vec{c}] = -30\).

To solve the problem, we need to calculate the scalar triple product of the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). The scalar triple product can be calculated using the formula: \[ [\vec{a} \, \vec{b} \, \vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c}) \] ### Step 1: Define the vectors Given: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

If vecaa=hati+2hatj+3hatk, vecb=2hati-hatj+hatk and vecc=hati+hatj-2hatk, verify that vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc.

If veca=2hati+2hatj-hatk, vecb=3hati-hatj-hatk and vecc=hati+2hatj-3hatk then verify that vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc .

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

if veca=hati-hatj-3hatk, vecb=4hati-3hatj+hatk and vecc=2hati+hatj+2hatk, verify that vecaxx(vecb+vecc)=vecaxxvecb+vecaxxvecc

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+hatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

If veca=2hati-3hatj+5hatk , vecb=3hati-4hatj+5hatk and vecc=5hati-3hatj-2hatk , then the volume of the parallelopiped with coterminous edges veca+vecb,vecb+vecc,vecc+veca is

If veca=7hati+3hatj-5hatk, vecb=2hati+5hatj-hatk and vecc-hati+2hatj+4hatk, then verify that vecaxx(b+c)=vecaxxvecb+vecaxxvecc

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. Sholve the simultasneous vector equations for vecx and vecy: vecx+vecc...

    Text Solution

    |

  2. The condition for equations vecrxxveca = vecb and vecr xx vecc = vecd ...

    Text Solution

    |

  3. If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2h...

    Text Solution

    |

  4. If veca=2hati + hatj+ hatk, vecb= hati+ 2hatj + 2hatk,vecc = hati+ hat...

    Text Solution

    |

  5. Let (veca (x) = (sin x) hati+ (cos x) hatj and vecb(x) = (cos 2x) hati...

    Text Solution

    |

  6. For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( vec...

    Text Solution

    |

  7. If veca,vecb and vecc are three non coplanar vectors and vecr is any v...

    Text Solution

    |

  8. If vecP = (vecbxxvecc)/([vecavecbvecc]).vecq=(veccxxveca)/([veca vecb ...

    Text Solution

    |

  9. A (veca), B (vecb) and C (vecc) are the vertices of triangle ABC and R...

    Text Solution

    |

  10. If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is ...

    Text Solution

    |

  11. If V be the volume of a tetrahedron and V ' be the volume of another...

    Text Solution

    |

  12. [(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca)...

    Text Solution

    |

  13. If vecr=x(1)(vecaxx vecb) + x(2) (vecb xxveca) + x(3)(vecc xxvecd) and...

    Text Solution

    |

  14. If veca bot vecb then vector vecv in terms of veca and vecb satisfying...

    Text Solution

    |

  15. If veca' = hati + hatj, vecb'= hati - hatj + 2hatk and vecc' = 2hati -...

    Text Solution

    |

  16. If veca= hati +hatj, vecb= hatj + hatk, vecc = hatk + hati then in th...

    Text Solution

    |

  17. If unit vectors veca and vecb are inclined at an angle 2 theta such th...

    Text Solution

    |

  18. vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .ve...

    Text Solution

    |

  19. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  20. If vectors veca and vecb are two adjecent sides of a paralleogram, the...

    Text Solution

    |