Home
Class 12
MATHS
For any vectors veca and vecb, (veca xx ...

For any vectors `veca and vecb, (veca xx hati) + (vecb xx hati) + ( veca xx hatj) . (vecb xx hatj) + (veca xx hatk ) .(vecb xx hatk)` is always equal to

A

`veca. vecb`

B

` 2 veca. Vecb`

C

zero

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\vec{a} \times \hat{i}) + (\vec{b} \times \hat{i}) + (\vec{a} \times \hat{j}) \cdot (\vec{b} \times \hat{j}) + (\vec{a} \times \hat{k}) \cdot (\vec{b} \times \hat{k})\), we will follow these steps: ### Step 1: Calculate \((\vec{a} \times \hat{i}) \cdot (\vec{b} \times \hat{i})\) Using the vector triple product identity: \[ \vec{a} \times \hat{i} \cdot \vec{b} \times \hat{i} = (\vec{a} \cdot \vec{b})(\hat{i} \cdot \hat{i}) - (\vec{a} \cdot \hat{i})(\vec{b} \cdot \hat{i}) \] Since \(\hat{i} \cdot \hat{i} = 1\), this simplifies to: \[ \vec{a} \cdot \vec{b} - (\vec{a} \cdot \hat{i})(\vec{b} \cdot \hat{i}) \] ### Step 2: Calculate \((\vec{a} \times \hat{j}) \cdot (\vec{b} \times \hat{j})\) Using the same identity: \[ \vec{a} \times \hat{j} \cdot \vec{b} \times \hat{j} = (\vec{a} \cdot \vec{b})(\hat{j} \cdot \hat{j}) - (\vec{a} \cdot \hat{j})(\vec{b} \cdot \hat{j}) \] This simplifies to: \[ \vec{a} \cdot \vec{b} - (\vec{a} \cdot \hat{j})(\vec{b} \cdot \hat{j}) \] ### Step 3: Calculate \((\vec{a} \times \hat{k}) \cdot (\vec{b} \times \hat{k})\) Using the same identity: \[ \vec{a} \times \hat{k} \cdot \vec{b} \times \hat{k} = (\vec{a} \cdot \vec{b})(\hat{k} \cdot \hat{k}) - (\vec{a} \cdot \hat{k})(\vec{b} \cdot \hat{k}) \] This simplifies to: \[ \vec{a} \cdot \vec{b} - (\vec{a} \cdot \hat{k})(\vec{b} \cdot \hat{k}) \] ### Step 4: Combine all parts Now, we add the results from Steps 1, 2, and 3: \[ (\vec{a} \times \hat{i}) \cdot (\vec{b} \times \hat{i}) + (\vec{a} \times \hat{j}) \cdot (\vec{b} \times \hat{j}) + (\vec{a} \times \hat{k}) \cdot (\vec{b} \times \hat{k}) \] This leads to: \[ \left(\vec{a} \cdot \vec{b} - (\vec{a} \cdot \hat{i})(\vec{b} \cdot \hat{i})\right) + \left(\vec{a} \cdot \vec{b} - (\vec{a} \cdot \hat{j})(\vec{b} \cdot \hat{j})\right) + \left(\vec{a} \cdot \vec{b} - (\vec{a} \cdot \hat{k})(\vec{b} \cdot \hat{k})\right) \] Combining these gives: \[ 3(\vec{a} \cdot \vec{b}) - \left((\vec{a} \cdot \hat{i})(\vec{b} \cdot \hat{i}) + (\vec{a} \cdot \hat{j})(\vec{b} \cdot \hat{j}) + (\vec{a} \cdot \hat{k})(\vec{b} \cdot \hat{k})\right) \] ### Step 5: Substitute vector components Let: \[ \vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}, \quad \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \] Then: \[ \vec{a} \cdot \hat{i} = a_1, \quad \vec{b} \cdot \hat{i} = b_1 \] \[ \vec{a} \cdot \hat{j} = a_2, \quad \vec{b} \cdot \hat{j} = b_2 \] \[ \vec{a} \cdot \hat{k} = a_3, \quad \vec{b} \cdot \hat{k} = b_3 \] Substituting these into our expression gives: \[ 3(\vec{a} \cdot \vec{b}) - (a_1 b_1 + a_2 b_2 + a_3 b_3) = 2(\vec{a} \cdot \vec{b}) \] ### Final Result Thus, we conclude that: \[ (\vec{a} \times \hat{i}) + (\vec{b} \times \hat{i}) + (\vec{a} \times \hat{j}) \cdot (\vec{b} \times \hat{j}) + (\vec{a} \times \hat{k}) \cdot (\vec{b} \times \hat{k}) = 2(\vec{a} \cdot \vec{b}) \]

To solve the expression \((\vec{a} \times \hat{i}) + (\vec{b} \times \hat{i}) + (\vec{a} \times \hat{j}) \cdot (\vec{b} \times \hat{j}) + (\vec{a} \times \hat{k}) \cdot (\vec{b} \times \hat{k})\), we will follow these steps: ### Step 1: Calculate \((\vec{a} \times \hat{i}) \cdot (\vec{b} \times \hat{i})\) Using the vector triple product identity: \[ \vec{a} \times \hat{i} \cdot \vec{b} \times \hat{i} = (\vec{a} \cdot \vec{b})(\hat{i} \cdot \hat{i}) - (\vec{a} \cdot \hat{i})(\vec{b} \cdot \hat{i}) \] Since \(\hat{i} \cdot \hat{i} = 1\), this simplifies to: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |veca xx hatk|^(2) is equal to

For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |veca xx hatk|^(2) is equal to

For any four vectors veca, vecb, vecc, vecd the expressions (vecb xx vecc).(veca xx vecd) +(vecc xx veca).(vecb xx vecd)+(veca xx vecb).(vecc xx vecd) is always equal to:

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

If vecb and vecc are unit vectors, then for any arbitary vector veca, (((veca xx vecb) + (veca xx vecc))xx (vecb xx vecc)) .(vecb -vecc) is always equal to

If veca * vecb = |veca xx vecb| , then this angle between veca and vecb is,

If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecb xx vecc))/(vecb.(vecc xx veca)) + (vecb.(vecc xx veca))/(vecc.(veca xx vecb)) +(vecc.(vecb xx veca))/(veca. (vecb xx vecc)) is equal to:

Consider three vectors veca , vecb and vecc Statement 1: vecaxxvecb = ((hatixxveca).vecb)hati+ ((hatj xx veca).vecb)hatj + (hatk xxveca).vecb)hatk Statement 2: vecc= (hati.vecc)hati+ (hatj .vecc) hatj + (hatk. vecc)hatk

If veca=2hati + hatj + hatk , vecb=hati + 2hatj + 2hatk then [veca vecb veci] hati + [veca vecb vecj] hatj + [veca vecb hatk] k is equal to

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If veca=2hati + hatj+ hatk, vecb= hati+ 2hatj + 2hatk,vecc = hati+ hat...

    Text Solution

    |

  2. Let (veca (x) = (sin x) hati+ (cos x) hatj and vecb(x) = (cos 2x) hati...

    Text Solution

    |

  3. For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( vec...

    Text Solution

    |

  4. If veca,vecb and vecc are three non coplanar vectors and vecr is any v...

    Text Solution

    |

  5. If vecP = (vecbxxvecc)/([vecavecbvecc]).vecq=(veccxxveca)/([veca vecb ...

    Text Solution

    |

  6. A (veca), B (vecb) and C (vecc) are the vertices of triangle ABC and R...

    Text Solution

    |

  7. If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is ...

    Text Solution

    |

  8. If V be the volume of a tetrahedron and V ' be the volume of another...

    Text Solution

    |

  9. [(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca)...

    Text Solution

    |

  10. If vecr=x(1)(vecaxx vecb) + x(2) (vecb xxveca) + x(3)(vecc xxvecd) and...

    Text Solution

    |

  11. If veca bot vecb then vector vecv in terms of veca and vecb satisfying...

    Text Solution

    |

  12. If veca' = hati + hatj, vecb'= hati - hatj + 2hatk and vecc' = 2hati -...

    Text Solution

    |

  13. If veca= hati +hatj, vecb= hatj + hatk, vecc = hatk + hati then in th...

    Text Solution

    |

  14. If unit vectors veca and vecb are inclined at an angle 2 theta such th...

    Text Solution

    |

  15. vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .ve...

    Text Solution

    |

  16. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  17. If vectors veca and vecb are two adjecent sides of a paralleogram, the...

    Text Solution

    |

  18. If veca xx (vec b xx vecc) is perpendicular to (veca xx vecb ) xx vecc...

    Text Solution

    |

  19. Let veca , vecb and vecc be vectors forming right- hand triad . Let ve...

    Text Solution

    |

  20. a(1), a(2),a(3) in R - {0} and a(1)+ a(2)cos2x+ a(3)sin^(2)x=0 " for ...

    Text Solution

    |