Home
Class 12
MATHS
If veca,vecb and vecc are three non copl...

If `veca,vecb and vecc` are three non coplanar vectors and `vecr` is any vector in space, then `(vecxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)=` (A) `[veca vecb vecc]` (B) `2[veca vecb vecc]vecr` (C) `3[veca vecb vecc]vecr` (D) `4[veca vecb vecc]vecr`

A

`[veca vecb vecc]vecr`

B

`2 [veca vecb vecc]vecr`

C

`3 [veca vecb vecc]vecr`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ (\vec{a} \times \vec{b}) \times (\vec{r} \times \vec{c}) + (\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a}) + (\vec{c} \times \vec{a}) \times (\vec{r} \times \vec{b}) \] where \(\vec{a}, \vec{b}, \vec{c}\) are non-coplanar vectors and \(\vec{r}\) is any vector in space. ### Step 1: Evaluate the first term Using the vector triple product identity, we have: \[ \vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w}) \vec{v} - (\vec{u} \cdot \vec{v}) \vec{w} \] Applying this to the first term: \[ (\vec{a} \times \vec{b}) \times (\vec{r} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{r} - (\vec{a} \cdot \vec{r}) \vec{c} \] ### Step 2: Evaluate the second term Now we apply the same identity to the second term: \[ (\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a}) = (\vec{b} \cdot \vec{a}) \vec{r} - (\vec{b} \cdot \vec{r}) \vec{a} \] ### Step 3: Evaluate the third term For the third term, we again apply the vector triple product identity: \[ (\vec{c} \times \vec{a}) \times (\vec{r} \times \vec{b}) = (\vec{c} \cdot \vec{b}) \vec{r} - (\vec{c} \cdot \vec{r}) \vec{b} \] ### Step 4: Combine all terms Now we combine all three results: \[ \left[ (\vec{a} \cdot \vec{c}) \vec{r} - (\vec{a} \cdot \vec{r}) \vec{c} \right] + \left[ (\vec{b} \cdot \vec{a}) \vec{r} - (\vec{b} \cdot \vec{r}) \vec{a} \right] + \left[ (\vec{c} \cdot \vec{b}) \vec{r} - (\vec{c} \cdot \vec{r}) \vec{b} \right] \] ### Step 5: Group the terms Grouping the terms involving \(\vec{r}\): \[ \left[ (\vec{a} \cdot \vec{c}) + (\vec{b} \cdot \vec{a}) + (\vec{c} \cdot \vec{b}) \right] \vec{r} - \left[ (\vec{a} \cdot \vec{r}) \vec{c} + (\vec{b} \cdot \vec{r}) \vec{a} + (\vec{c} \cdot \vec{r}) \vec{b} \right] \] ### Step 6: Recognize the scalar triple product The expression \((\vec{a} \cdot \vec{b} \cdot \vec{c})\) is the scalar triple product \([\vec{a}, \vec{b}, \vec{c}]\). Thus, we can rewrite the expression as: \[ 3[\vec{a}, \vec{b}, \vec{c}] \vec{r} - \text{(other terms)} \] ### Final Result After simplifying, we find that the expression evaluates to: \[ 2[\vec{a}, \vec{b}, \vec{c}] \vec{r} \] Thus, the correct answer is (B) \(2[\vec{a}, \vec{b}, \vec{c}] \vec{r}\).

To solve the problem, we need to evaluate the expression: \[ (\vec{a} \times \vec{b}) \times (\vec{r} \times \vec{c}) + (\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a}) + (\vec{c} \times \vec{a}) \times (\vec{r} \times \vec{b}) \] where \(\vec{a}, \vec{b}, \vec{c}\) are non-coplanar vectors and \(\vec{r}\) is any vector in space. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecaxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)=

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecaxxvecb)xx(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)=

If veca,vecb and vecc are non coplnar and non zero vectors and vecr is any vector in space then [vecc vecr vecb]veca+[veca vecr vecc] vecb+[vecb vecr veca]c= (A) [veca vecb vecc] (B) [veca vecb vecc]vecr (C) vecr/([veca vecb vecc]) (D) vecr.(veca+vecb+vecc)

vec a , vec ba n d vec c are three non-coplanar ,non-zero vectors and vec r is any vector in space, then ( veca × vecb )×( vecr × vecc )+( vecb × vecc )×( vecr × veca )+( vecc × veca )×( vecr × vecb ) is equal to

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to

veca , vecb and vecc are three non-coplanar vectors and vecr . Is any arbitrary vector. Prove that [vecbvecc vecr]veca+[vecc veca vecr]vecb+[vecavecbvecr]vecc=[veca vecb vecc]vecr .

Statement 1: Let vecr be any vector in space. Then, vecr=(vecr.hati)hati+(vecr.hatj)hatj+(vecr.hatk)hatk Statement 2: If veca, vecb, vecc are three non-coplanar vectors and vecr is any vector in space then vecr={([(vecr, vecb, vecc)])/([(veca, vecb, vecc)])}veca+{([(vecr, vecc, veca)])/([(veca, vecb, vecc)])}vecb+{([(vecr, veca, vecb)])/([(veca, vecb, vecc)])}vecc

If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr satisfying vecr.veca=vecr.vecb=vecr.vecc=1 , is

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. Let (veca (x) = (sin x) hati+ (cos x) hatj and vecb(x) = (cos 2x) hati...

    Text Solution

    |

  2. For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( vec...

    Text Solution

    |

  3. If veca,vecb and vecc are three non coplanar vectors and vecr is any v...

    Text Solution

    |

  4. If vecP = (vecbxxvecc)/([vecavecbvecc]).vecq=(veccxxveca)/([veca vecb ...

    Text Solution

    |

  5. A (veca), B (vecb) and C (vecc) are the vertices of triangle ABC and R...

    Text Solution

    |

  6. If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is ...

    Text Solution

    |

  7. If V be the volume of a tetrahedron and V ' be the volume of another...

    Text Solution

    |

  8. [(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca)...

    Text Solution

    |

  9. If vecr=x(1)(vecaxx vecb) + x(2) (vecb xxveca) + x(3)(vecc xxvecd) and...

    Text Solution

    |

  10. If veca bot vecb then vector vecv in terms of veca and vecb satisfying...

    Text Solution

    |

  11. If veca' = hati + hatj, vecb'= hati - hatj + 2hatk and vecc' = 2hati -...

    Text Solution

    |

  12. If veca= hati +hatj, vecb= hatj + hatk, vecc = hatk + hati then in th...

    Text Solution

    |

  13. If unit vectors veca and vecb are inclined at an angle 2 theta such th...

    Text Solution

    |

  14. vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .ve...

    Text Solution

    |

  15. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  16. If vectors veca and vecb are two adjecent sides of a paralleogram, the...

    Text Solution

    |

  17. If veca xx (vec b xx vecc) is perpendicular to (veca xx vecb ) xx vecc...

    Text Solution

    |

  18. Let veca , vecb and vecc be vectors forming right- hand triad . Let ve...

    Text Solution

    |

  19. a(1), a(2),a(3) in R - {0} and a(1)+ a(2)cos2x+ a(3)sin^(2)x=0 " for ...

    Text Solution

    |

  20. If veca and vecb are two vectors and angle between them is theta , the...

    Text Solution

    |