Home
Class 12
MATHS
If vecP = (vecbxxvecc)/([vecavecbvecc])....

If `vecP = (vecbxxvecc)/([vecavecbvecc]).vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc` are three non- coplanar vectors then the value of the expression `(veca + vecb + vecc ). (vecq+ vecq+vecr)` is

A

3

B

2

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \((\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{q} + \vec{q} + \vec{r})\), where: - \(\vec{p} = \frac{\vec{b} \times \vec{c}}{[\vec{a}, \vec{b}, \vec{c}]}\) - \(\vec{q} = \frac{\vec{c} \times \vec{a}}{[\vec{a}, \vec{b}, \vec{c}]}\) - \(\vec{r} = \frac{\vec{a} \times \vec{b}}{[\vec{a}, \vec{b}, \vec{c}]}\) Here, \([\vec{a}, \vec{b}, \vec{c}]\) denotes the scalar triple product of vectors \(\vec{a}, \vec{b}, \vec{c}\). ### Step 1: Calculate \(\vec{q} + \vec{r}\) We first need to find \(\vec{q} + \vec{r}\): \[ \vec{q} + \vec{r} = \frac{\vec{c} \times \vec{a}}{[\vec{a}, \vec{b}, \vec{c}]} + \frac{\vec{a} \times \vec{b}}{[\vec{a}, \vec{b}, \vec{c}]} \] Combining the fractions: \[ \vec{q} + \vec{r} = \frac{\vec{c} \times \vec{a} + \vec{a} \times \vec{b}}{[\vec{a}, \vec{b}, \vec{c}]} \] ### Step 2: Substitute into the expression Now we substitute \(\vec{q} + \vec{r}\) into the expression: \[ (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{q} + \vec{r}) = (\vec{a} + \vec{b} + \vec{c}) \cdot \left(\frac{\vec{c} \times \vec{a} + \vec{a} \times \vec{b}}{[\vec{a}, \vec{b}, \vec{c}]}\right) \] This simplifies to: \[ = \frac{1}{[\vec{a}, \vec{b}, \vec{c}]} \left((\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{c} \times \vec{a}) + (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} \times \vec{b})\right) \] ### Step 3: Calculate each dot product 1. **For \((\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{c} \times \vec{a})\)**: - This is equal to \(\vec{a} \cdot (\vec{c} \times \vec{a}) + \vec{b} \cdot (\vec{c} \times \vec{a}) + \vec{c} \cdot (\vec{c} \times \vec{a})\). - The first and last terms are zero because \(\vec{a} \cdot (\vec{c} \times \vec{a}) = 0\) and \(\vec{c} \cdot (\vec{c} \times \vec{a}) = 0\). - Thus, we have \(\vec{b} \cdot (\vec{c} \times \vec{a})\). 2. **For \((\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} \times \vec{b})\)**: - This is equal to \(\vec{a} \cdot (\vec{a} \times \vec{b}) + \vec{b} \cdot (\vec{a} \times \vec{b}) + \vec{c} \cdot (\vec{a} \times \vec{b})\). - The first two terms are zero, so we have \(\vec{c} \cdot (\vec{a} \times \vec{b})\). ### Step 4: Combine results Now, we combine the results: \[ = \frac{1}{[\vec{a}, \vec{b}, \vec{c}]} \left(\vec{b} \cdot (\vec{c} \times \vec{a}) + \vec{c} \cdot (\vec{a} \times \vec{b})\right) \] Using the scalar triple product identity: \[ \vec{b} \cdot (\vec{c} \times \vec{a}) = [\vec{a}, \vec{b}, \vec{c}] \] and \[ \vec{c} \cdot (\vec{a} \times \vec{b}) = [\vec{a}, \vec{b}, \vec{c}] \] Thus, we have: \[ = \frac{[\vec{a}, \vec{b}, \vec{c}] + [\vec{a}, \vec{b}, \vec{c}]}{[\vec{a}, \vec{b}, \vec{c}]} = \frac{2[\vec{a}, \vec{b}, \vec{c}]}{[\vec{a}, \vec{b}, \vec{c}]} = 2 \] ### Final Step: Add \(\vec{p}\) Finally, we need to add \(\vec{p}\): \[ (\vec{a} + \vec{b} + \vec{c}) \cdot \vec{p} = 1 \] ### Conclusion Thus, the final value of the expression is: \[ 1 + 2 = 3 \] ### Answer: The value of the expression \((\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{q} + \vec{q} + \vec{r})\) is **3**.

To solve the problem, we need to evaluate the expression \((\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{q} + \vec{q} + \vec{r})\), where: - \(\vec{p} = \frac{\vec{b} \times \vec{c}}{[\vec{a}, \vec{b}, \vec{c}]}\) - \(\vec{q} = \frac{\vec{c} \times \vec{a}}{[\vec{a}, \vec{b}, \vec{c}]}\) - \(\vec{r} = \frac{\vec{a} \times \vec{b}}{[\vec{a}, \vec{b}, \vec{c}]}\) Here, \([\vec{a}, \vec{b}, \vec{c}]\) denotes the scalar triple product of vectors \(\vec{a}, \vec{b}, \vec{c}\). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

If vecp=(vecbxxvecc)/([(veca,vecb,vecc)]),vecq=(veccxxveca)/([(veca,vecb,vecc)]),vecr=(vecaxxvecb)/([(veca,vecb,vecb)]) where veca,vecb,vecc are three non-coplanar vectors, then the value of the expression (veca+vecb+vecc).(vecp+vecq+vecr) is

If vecA=(vecbxxvecc)/([vecb vecc veca]), vecB=(veccxxveca)/([vecc veca vecb]), vecC=(vecaxxvecb)/([veca vecb vecc]) find [vecA vecB vecC]

If is given that vecx= (vecbxxvecc)/([veca,vecb,vecc]), vecy=(veccxxveca)/[(veca,vecb,vecc)], vecz=(vecaxxvecb)/[(veca,vecb,vecc)] where veca,vecb,vecc are non coplanar vectors. Find the value of vecx.(veca+vecb)+vecy.(vecc+vecb)+vecz(vecc+veca)

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

Solve veca.vecr=x, vecb.vecr=y, vecc.vecr=z where veca,vecb,vecc are given non coplasnar vectors.

If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr satisfying vecr.veca=vecr.vecb=vecr.vecc=1 , is

Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are vectors defined by the relations vecp= (vecbxxvecc)/([veca vecb vecc]), vecq= (veccxxveca)/([veca vecb vecc]), vecr= (vecaxxvecb)/([veca vecb vecc]) then the value of the expression (veca+vecb).vecp+(vecb+vecc).vecq+(vecc+veca).vecr . is equal to (A) 0 (B) 1 (C) 2 (D) 3

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( vec...

    Text Solution

    |

  2. If veca,vecb and vecc are three non coplanar vectors and vecr is any v...

    Text Solution

    |

  3. If vecP = (vecbxxvecc)/([vecavecbvecc]).vecq=(veccxxveca)/([veca vecb ...

    Text Solution

    |

  4. A (veca), B (vecb) and C (vecc) are the vertices of triangle ABC and R...

    Text Solution

    |

  5. If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is ...

    Text Solution

    |

  6. If V be the volume of a tetrahedron and V ' be the volume of another...

    Text Solution

    |

  7. [(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca)...

    Text Solution

    |

  8. If vecr=x(1)(vecaxx vecb) + x(2) (vecb xxveca) + x(3)(vecc xxvecd) and...

    Text Solution

    |

  9. If veca bot vecb then vector vecv in terms of veca and vecb satisfying...

    Text Solution

    |

  10. If veca' = hati + hatj, vecb'= hati - hatj + 2hatk and vecc' = 2hati -...

    Text Solution

    |

  11. If veca= hati +hatj, vecb= hatj + hatk, vecc = hatk + hati then in th...

    Text Solution

    |

  12. If unit vectors veca and vecb are inclined at an angle 2 theta such th...

    Text Solution

    |

  13. vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .ve...

    Text Solution

    |

  14. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  15. If vectors veca and vecb are two adjecent sides of a paralleogram, the...

    Text Solution

    |

  16. If veca xx (vec b xx vecc) is perpendicular to (veca xx vecb ) xx vecc...

    Text Solution

    |

  17. Let veca , vecb and vecc be vectors forming right- hand triad . Let ve...

    Text Solution

    |

  18. a(1), a(2),a(3) in R - {0} and a(1)+ a(2)cos2x+ a(3)sin^(2)x=0 " for ...

    Text Solution

    |

  19. If veca and vecb are two vectors and angle between them is theta , the...

    Text Solution

    |

  20. Let veca and vecb be two non- zero perpendicular vectors. A vector vec...

    Text Solution

    |