Home
Class 12
MATHS
If vecr=x(1)(vecaxx vecb) + x(2) (vecb x...

If `vecr=x_(1)(vecaxx vecb) + x_(2) (vecb xxveca) + x_(3)(vecc xxvecd) and 4[veca vecb vecc] =1 " then " x_(1) + x_(2) + x_(3)` is equal to

A

`1/2vecr.(veca + vecb + vecc)`

B

`1/4vecr.(veca + vecb + vecc)`

C

`2vecr.(veca + vecb + vecc)`

D

`4vecr.(veca + vecb + vecc)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we need to find the values of \( x_1 \), \( x_2 \), and \( x_3 \) from the given vector equation and then sum them up. ### Step 1: Understand the given vector equation We have the vector \( \vec{r} = x_1 (\vec{a} \times \vec{b}) + x_2 (\vec{b} \times \vec{a}) + x_3 (\vec{c} \times \vec{d}) \). ### Step 2: Use the property of dot product and cross product To find \( x_1 \), \( x_2 \), and \( x_3 \), we can use the property that if two vectors are the same in a cross product, the result is zero. ### Step 3: Calculate \( x_2 \) We can find \( x_2 \) by taking the dot product of \( \vec{r} \) with \( \vec{a} \): \[ \vec{r} \cdot \vec{a} = x_1 (\vec{a} \times \vec{b}) \cdot \vec{a} + x_2 (\vec{b} \times \vec{a}) \cdot \vec{a} + x_3 (\vec{c} \times \vec{d}) \cdot \vec{a} \] The first term becomes zero because \( \vec{a} \times \vec{b} \cdot \vec{a} = 0 \), and the second term also becomes zero because \( \vec{b} \times \vec{a} \cdot \vec{a} = 0 \). Thus, we have: \[ \vec{r} \cdot \vec{a} = x_3 (\vec{c} \times \vec{d}) \cdot \vec{a} \] ### Step 4: Calculate \( x_3 \) Now, we can find \( x_3 \) by taking the dot product of \( \vec{r} \) with \( \vec{b} \): \[ \vec{r} \cdot \vec{b} = x_1 (\vec{a} \times \vec{b}) \cdot \vec{b} + x_2 (\vec{b} \times \vec{a}) \cdot \vec{b} + x_3 (\vec{c} \times \vec{d}) \cdot \vec{b} \] Again, the first two terms become zero. Thus, we have: \[ \vec{r} \cdot \vec{b} = x_3 (\vec{c} \times \vec{d}) \cdot \vec{b} \] ### Step 5: Calculate \( x_1 \) Next, we find \( x_1 \) by taking the dot product of \( \vec{r} \) with \( \vec{c} \): \[ \vec{r} \cdot \vec{c} = x_1 (\vec{a} \times \vec{b}) \cdot \vec{c} + x_2 (\vec{b} \times \vec{a}) \cdot \vec{c} + x_3 (\vec{c} \times \vec{d}) \cdot \vec{c} \] The last term becomes zero. Thus, we have: \[ \vec{r} \cdot \vec{c} = x_1 (\vec{a} \times \vec{b}) \cdot \vec{c} + x_2 (\vec{b} \times \vec{a}) \cdot \vec{c} \] ### Step 6: Use the determinant condition Given that \( 4[\vec{a}, \vec{b}, \vec{c}] = 1 \), we can express \( [\vec{a}, \vec{b}, \vec{c}] \) as \( \frac{1}{4} \). ### Step 7: Substitute values From the above equations, we can express: - \( x_1 = 4 \frac{\vec{r} \cdot \vec{c}}{[\vec{a}, \vec{b}, \vec{c}]} = 16 \vec{r} \cdot \vec{c} \) - \( x_2 = 4 \frac{\vec{r} \cdot \vec{a}}{[\vec{b}, \vec{c}, \vec{a}]} = 16 \vec{r} \cdot \vec{a} \) - \( x_3 = 4 \frac{\vec{r} \cdot \vec{b}}{[\vec{c}, \vec{a}, \vec{b}]} = 16 \vec{r} \cdot \vec{b} \) ### Step 8: Find \( x_1 + x_2 + x_3 \) Now, we can add these values: \[ x_1 + x_2 + x_3 = 16 (\vec{r} \cdot \vec{c} + \vec{r} \cdot \vec{a} + \vec{r} \cdot \vec{b}) \] ### Step 9: Final expression Thus, the final value of \( x_1 + x_2 + x_3 \) is: \[ x_1 + x_2 + x_3 = 4 \cdot \vec{r} \cdot (\vec{a} + \vec{b} + \vec{c}) \] ### Summary The answer is \( 4 \cdot \vec{r} \cdot (\vec{a} + \vec{b} + \vec{c}) \).

To solve the problem step-by-step, we need to find the values of \( x_1 \), \( x_2 \), and \( x_3 \) from the given vector equation and then sum them up. ### Step 1: Understand the given vector equation We have the vector \( \vec{r} = x_1 (\vec{a} \times \vec{b}) + x_2 (\vec{b} \times \vec{a}) + x_3 (\vec{c} \times \vec{d}) \). ### Step 2: Use the property of dot product and cross product To find \( x_1 \), \( x_2 \), and \( x_3 \), we can use the property that if two vectors are the same in a cross product, the result is zero. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If V be the volume of a tetrahedron and V ' be the volume of another...

    Text Solution

    |

  2. [(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca)...

    Text Solution

    |

  3. If vecr=x(1)(vecaxx vecb) + x(2) (vecb xxveca) + x(3)(vecc xxvecd) and...

    Text Solution

    |

  4. If veca bot vecb then vector vecv in terms of veca and vecb satisfying...

    Text Solution

    |

  5. If veca' = hati + hatj, vecb'= hati - hatj + 2hatk and vecc' = 2hati -...

    Text Solution

    |

  6. If veca= hati +hatj, vecb= hatj + hatk, vecc = hatk + hati then in th...

    Text Solution

    |

  7. If unit vectors veca and vecb are inclined at an angle 2 theta such th...

    Text Solution

    |

  8. vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .ve...

    Text Solution

    |

  9. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  10. If vectors veca and vecb are two adjecent sides of a paralleogram, the...

    Text Solution

    |

  11. If veca xx (vec b xx vecc) is perpendicular to (veca xx vecb ) xx vecc...

    Text Solution

    |

  12. Let veca , vecb and vecc be vectors forming right- hand triad . Let ve...

    Text Solution

    |

  13. a(1), a(2),a(3) in R - {0} and a(1)+ a(2)cos2x+ a(3)sin^(2)x=0 " for ...

    Text Solution

    |

  14. If veca and vecb are two vectors and angle between them is theta , the...

    Text Solution

    |

  15. Let veca and vecb be two non- zero perpendicular vectors. A vector vec...

    Text Solution

    |

  16. If vector vec b=(t a nalpha,-1, 2sqrt(sinalpha//2))a n d vec c=(t a n...

    Text Solution

    |

  17. Let vecr be a unit vector satisfying vecr xx veca = vecb, " where " |v...

    Text Solution

    |

  18. If veca and vecb are unequal unit vectors such that (veca - vecb) xx[ ...

    Text Solution

    |

  19. If veca and vecb are two unit vectors perpenicualar to each other and ...

    Text Solution

    |

  20. If vectors veca and vecb are non collinear then veca/(|veca|)+vecb/(|v...

    Text Solution

    |