Home
Class 12
MATHS
If veca= hati +hatj, vecb= hatj + hatk, ...

If `veca= hati +hatj, vecb= hatj + hatk, vecc = hatk + hati ` then in the reciprocal system of vectors `veca, vecb, vecc` reciprocal `veca` of vector `veca` is

A

`(hati + hatj + hatk)/2`

B

`(hati - hatj + hatk)/2`

C

`(-hati - hatj + hatk)/2`

D

`(hati + hatj - hatk)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the reciprocal of the vector \(\vec{a}\) in the reciprocal system of vectors \(\vec{a}, \vec{b}, \vec{c}\), we will follow these steps: ### Step 1: Define the vectors Given: \[ \vec{a} = \hat{i} + \hat{j}, \quad \vec{b} = \hat{j} + \hat{k}, \quad \vec{c} = \hat{k} + \hat{i} \] ### Step 2: Find the cross product \(\vec{b} \times \vec{c}\) To find \(\vec{b} \times \vec{c}\), we will set up the determinant: \[ \vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \(\begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1\) 2. \(\begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} = 0 - 1 = -1\) 3. \(\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = 0 - 1 = -1\) Putting this together: \[ \vec{b} \times \vec{c} = \hat{i}(1) - \hat{j}(-1) + \hat{k}(-1) = \hat{i} + \hat{j} - \hat{k} \] ### Step 3: Find the determinant of \(\vec{a}, \vec{b}, \vec{c}\) Now we calculate the determinant of the matrix formed by \(\vec{a}, \vec{b}, \vec{c}\): \[ \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \(\begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} = 1\) 2. \(\begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} = 1\) 3. \(\begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1\) Putting this together: \[ = \hat{i}(1) - \hat{j}(1) + \hat{k}(1) = \hat{i} - \hat{j} + \hat{k} \] ### Step 4: Find the reciprocal of \(\vec{a}\) Using the formula for the reciprocal of vector \(\vec{a}\): \[ \text{Reciprocal of } \vec{a} = \frac{\vec{b} \times \vec{c}}{\text{det}(\vec{a}, \vec{b}, \vec{c})} \] Substituting the values we found: \[ = \frac{\hat{i} + \hat{j} - \hat{k}}{2} \] ### Final Answer The reciprocal of vector \(\vec{a}\) is: \[ \frac{1}{2}(\hat{i} + \hat{j} - \hat{k}) \]

To find the reciprocal of the vector \(\vec{a}\) in the reciprocal system of vectors \(\vec{a}, \vec{b}, \vec{c}\), we will follow these steps: ### Step 1: Define the vectors Given: \[ \vec{a} = \hat{i} + \hat{j}, \quad \vec{b} = \hat{j} + \hat{k}, \quad \vec{c} = \hat{k} + \hat{i} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

If veca=hati+hatj, vecb=hatj+hatk, vec c hatk+hati , a unit vector parallel to veca+vecb+vecc .

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If veca, vecb, vecc and veca', vecb', vecc' form a reciprocal system of vectors then [(veca', vecb', vecc')]=

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vector bot to the vector veca and coplanar with veca and vecb , then a unit vector vecd is perpendicular to both veca and vecc is:

Let veca=hati-hatj, vecb=hatj-hatk, vecc=hatk-hati. If hatd is a unit vector such that veca.hatd=0=[vecb vecc vecd] then hatd equals

If veca = (-hati + hatj - hatk) and vecb = (2hati- 2hatj + 2hatk) then find the unit vector in the direction of (veca + vecb) .

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If veca bot vecb then vector vecv in terms of veca and vecb satisfying...

    Text Solution

    |

  2. If veca' = hati + hatj, vecb'= hati - hatj + 2hatk and vecc' = 2hati -...

    Text Solution

    |

  3. If veca= hati +hatj, vecb= hatj + hatk, vecc = hatk + hati then in th...

    Text Solution

    |

  4. If unit vectors veca and vecb are inclined at an angle 2 theta such th...

    Text Solution

    |

  5. vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .ve...

    Text Solution

    |

  6. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  7. If vectors veca and vecb are two adjecent sides of a paralleogram, the...

    Text Solution

    |

  8. If veca xx (vec b xx vecc) is perpendicular to (veca xx vecb ) xx vecc...

    Text Solution

    |

  9. Let veca , vecb and vecc be vectors forming right- hand triad . Let ve...

    Text Solution

    |

  10. a(1), a(2),a(3) in R - {0} and a(1)+ a(2)cos2x+ a(3)sin^(2)x=0 " for ...

    Text Solution

    |

  11. If veca and vecb are two vectors and angle between them is theta , the...

    Text Solution

    |

  12. Let veca and vecb be two non- zero perpendicular vectors. A vector vec...

    Text Solution

    |

  13. If vector vec b=(t a nalpha,-1, 2sqrt(sinalpha//2))a n d vec c=(t a n...

    Text Solution

    |

  14. Let vecr be a unit vector satisfying vecr xx veca = vecb, " where " |v...

    Text Solution

    |

  15. If veca and vecb are unequal unit vectors such that (veca - vecb) xx[ ...

    Text Solution

    |

  16. If veca and vecb are two unit vectors perpenicualar to each other and ...

    Text Solution

    |

  17. If vectors veca and vecb are non collinear then veca/(|veca|)+vecb/(|v...

    Text Solution

    |

  18. If veca and vecb are non - zero vectors such that |veca + vecb| = |vec...

    Text Solution

    |

  19. Let veca vecb and vecc be non- zero vectors aned vecV(1) =veca xx (vec...

    Text Solution

    |

  20. Vectors vecA and vecB satisfying the vector equation vecA+ vecB = vec...

    Text Solution

    |