Home
Class 12
MATHS
vecb and vecc are non- collinear if veca...

`vecb and vecc` are non- collinear if `veca xx (vecb xx vecc) + (veca .vecb) vecb = ( 4-2x- sin y) vecb + ( x^(2) -1) vecc nad (veca. vecc) veca =veca ` then a. x =1 b. x = -1 c. `y = (4 n+1) pi/2, n in I ` d. `y ( 2n + 1) pi/2, n in I`

A

x =1

B

x = -1

C

`y = (4 n+1) pi/2, n in I `

D

`y ( 2n + 1) pi/2, n in I`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will break down the equations involving vectors and analyze them systematically. ### Step 1: Write down the given equation We start with the equation: \[ \vec{a} \times (\vec{b} \times \vec{c}) + (\vec{a} \cdot \vec{b}) \vec{b} = (4 - 2x - \sin y) \vec{b} + (x^2 - 1) \vec{c} \] ### Step 2: Use the vector triple product identity Using the vector triple product identity, we can rewrite \(\vec{a} \times (\vec{b} \times \vec{c})\) as: \[ \vec{a} \cdot \vec{c} \vec{b} - \vec{a} \cdot \vec{b} \vec{c} \] Thus, substituting this into our equation gives: \[ (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} + (\vec{a} \cdot \vec{b}) \vec{b} = (4 - 2x - \sin y) \vec{b} + (x^2 - 1) \vec{c} \] ### Step 3: Rearranging the equation We can rearrange the equation: \[ (\vec{a} \cdot \vec{c} + \vec{a} \cdot \vec{b}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} = (4 - 2x - \sin y) \vec{b} + (x^2 - 1) \vec{c} \] ### Step 4: Equate coefficients of \(\vec{b}\) and \(\vec{c}\) From the equation, we can equate the coefficients of \(\vec{b}\) and \(\vec{c}\): 1. For \(\vec{b}\): \[ \vec{a} \cdot \vec{c} + \vec{a} \cdot \vec{b} = 4 - 2x - \sin y \quad \text{(Equation 1)} \] 2. For \(\vec{c}\): \[ -\vec{a} \cdot \vec{b} = x^2 - 1 \quad \text{(Equation 2)} \] ### Step 5: Solve Equation 2 for \(\vec{a} \cdot \vec{b}\) From Equation 2: \[ \vec{a} \cdot \vec{b} = 1 - x^2 \] ### Step 6: Substitute into Equation 1 Substituting \(\vec{a} \cdot \vec{b}\) into Equation 1: \[ \vec{a} \cdot \vec{c} + (1 - x^2) = 4 - 2x - \sin y \] This simplifies to: \[ \vec{a} \cdot \vec{c} = 4 - 2x - \sin y - 1 + x^2 \] \[ \vec{a} \cdot \vec{c} = 3 - 2x - \sin y + x^2 \quad \text{(Equation 3)} \] ### Step 7: Use the condition \(\vec{a} \cdot \vec{c} \vec{a} = \vec{a}\) We are given that: \[ \vec{a} \cdot \vec{c} \vec{a} = \vec{a} \] This implies: \[ \vec{a} \cdot \vec{c} = 1 \] Substituting this into Equation 3 gives: \[ 1 = 3 - 2x - \sin y + x^2 \] Rearranging this results in: \[ 0 = x^2 - 2x + 2 - \sin y \] \[ \sin y = x^2 - 2x + 2 \quad \text{(Equation 4)} \] ### Step 8: Analyze the equation for \(\sin y\) The expression \(x^2 - 2x + 2\) can be rewritten as: \[ \sin y = (x - 1)^2 + 1 \] Since \(\sin y\) must be in the range \([-1, 1]\), we see that \((x - 1)^2 + 1\) is always greater than or equal to 1. Thus, for \(\sin y\) to be valid, we must have: \[ (x - 1)^2 + 1 \leq 1 \] This implies: \[ (x - 1)^2 = 0 \Rightarrow x = 1 \] ### Step 9: Substitute \(x = 1\) into Equation 4 Substituting \(x = 1\) into Equation 4 gives: \[ \sin y = 1 \] Thus, \(y\) can take the values: \[ y = \frac{\pi}{2} + 2n\pi \quad \text{for } n \in \mathbb{Z} \] This can also be expressed as: \[ y = (4n + 1)\frac{\pi}{2} \quad \text{for } n \in \mathbb{Z} \] ### Conclusion The correct answers are: - \(x = 1\) (Option A) - \(y = (4n + 1)\frac{\pi}{2}, n \in \mathbb{Z}\) (Option C)

To solve the given problem step by step, we will break down the equations involving vectors and analyze them systematically. ### Step 1: Write down the given equation We start with the equation: \[ \vec{a} \times (\vec{b} \times \vec{c}) + (\vec{a} \cdot \vec{b}) \vec{b} = (4 - 2x - \sin y) \vec{b} + (x^2 - 1) \vec{c} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If veca= hati +hatj, vecb= hatj + hatk, vecc = hatk + hati then in th...

    Text Solution

    |

  2. If unit vectors veca and vecb are inclined at an angle 2 theta such th...

    Text Solution

    |

  3. vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .ve...

    Text Solution

    |

  4. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  5. If vectors veca and vecb are two adjecent sides of a paralleogram, the...

    Text Solution

    |

  6. If veca xx (vec b xx vecc) is perpendicular to (veca xx vecb ) xx vecc...

    Text Solution

    |

  7. Let veca , vecb and vecc be vectors forming right- hand triad . Let ve...

    Text Solution

    |

  8. a(1), a(2),a(3) in R - {0} and a(1)+ a(2)cos2x+ a(3)sin^(2)x=0 " for ...

    Text Solution

    |

  9. If veca and vecb are two vectors and angle between them is theta , the...

    Text Solution

    |

  10. Let veca and vecb be two non- zero perpendicular vectors. A vector vec...

    Text Solution

    |

  11. If vector vec b=(t a nalpha,-1, 2sqrt(sinalpha//2))a n d vec c=(t a n...

    Text Solution

    |

  12. Let vecr be a unit vector satisfying vecr xx veca = vecb, " where " |v...

    Text Solution

    |

  13. If veca and vecb are unequal unit vectors such that (veca - vecb) xx[ ...

    Text Solution

    |

  14. If veca and vecb are two unit vectors perpenicualar to each other and ...

    Text Solution

    |

  15. If vectors veca and vecb are non collinear then veca/(|veca|)+vecb/(|v...

    Text Solution

    |

  16. If veca and vecb are non - zero vectors such that |veca + vecb| = |vec...

    Text Solution

    |

  17. Let veca vecb and vecc be non- zero vectors aned vecV(1) =veca xx (vec...

    Text Solution

    |

  18. Vectors vecA and vecB satisfying the vector equation vecA+ vecB = vec...

    Text Solution

    |

  19. A vector (vecd) is equally inclined to three vectors veca= hati - hatj...

    Text Solution

    |

  20. Vectors Perpendicular to hati - hatj- hatk and in the plane of hati + ...

    Text Solution

    |