Home
Class 12
MATHS
if veca xx vecb = vecc ,vecb xx vecc = v...

if `veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0` then (a) `|veca|= |vecc|` (b) `|veca|= |vecb|` (c) `|vecb|=1` (d) `|veca|=|vecb|= |vecc|=1`

A

`|veca|= |vecc|`

B

`|veca|= |vecb|`

C

`|vecb|=1`

D

`|veca|=vecb|= |vecc|=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given vector equations step by step. Given: 1. \(\vec{a} \times \vec{b} = \vec{c}\) 2. \(\vec{b} \times \vec{c} = \vec{a}\) 3. \(\vec{c} \neq \vec{0}\) ### Step 1: Understand the implications of the cross product From the first equation, \(\vec{a} \times \vec{b} = \vec{c}\), we know that the magnitude of \(\vec{c}\) can be expressed as: \[ |\vec{c}| = |\vec{a}| |\vec{b}| \sin \theta \] where \(\theta\) is the angle between \(\vec{a}\) and \(\vec{b}\). ### Step 2: Analyze the angle between \(\vec{a}\) and \(\vec{b}\) For \(\vec{c}\) to be non-zero, \(\sin \theta\) must be non-zero, which implies that \(\theta\) cannot be \(0\) or \(\pi\). Therefore, \(\theta\) must be \(90^\circ\) (or \(\frac{\pi}{2}\) radians). This means: \[ |\vec{c}| = |\vec{a}| |\vec{b}| \] ### Step 3: Analyze the second equation From the second equation, \(\vec{b} \times \vec{c} = \vec{a}\), we can similarly express the magnitude: \[ |\vec{a}| = |\vec{b}| |\vec{c}| \sin \phi \] where \(\phi\) is the angle between \(\vec{b}\) and \(\vec{c}\). Since we have established that \(\vec{b}\) and \(\vec{c}\) are also perpendicular (as derived from the conditions), we have \(\phi = 90^\circ\). Thus: \[ |\vec{a}| = |\vec{b}| |\vec{c}| \] ### Step 4: Set up the equations Now we have two equations: 1. \( |\vec{c}| = |\vec{a}| |\vec{b}| \) 2. \( |\vec{a}| = |\vec{b}| |\vec{c}| \) ### Step 5: Substitute and simplify From the first equation, we can substitute \( |\vec{c}| \) into the second equation: \[ |\vec{a}| = |\vec{b}| (|\vec{a}| |\vec{b}|) \] This simplifies to: \[ |\vec{a}| = |\vec{a}| |\vec{b}|^2 \] If \( |\vec{a}| \neq 0 \) (which it cannot be, since \(\vec{c} \neq \vec{0}\)), we can divide both sides by \( |\vec{a}| \): \[ 1 = |\vec{b}|^2 \] Thus, we find that: \[ |\vec{b}| = 1 \] ### Step 6: Find the relationship between magnitudes Substituting \( |\vec{b}| = 1 \) back into the first equation: \[ |\vec{c}| = |\vec{a}| \cdot 1 \implies |\vec{c}| = |\vec{a}| \] ### Conclusion From our findings, we have: - \( |\vec{a}| = |\vec{c}| \) - \( |\vec{b}| = 1 \) Thus, the correct options are: (a) \( |\vec{a}| = |\vec{c}| \) (True) (b) \( |\vec{a}| = |\vec{b}| \) (False) (c) \( |\vec{b}| = 1 \) (True) (d) \( |\vec{a}| = |\vec{b}| = |\vec{c}| = 1 \) (False) ### Final Answer The correct options are (a) and (c).

To solve the problem, we need to analyze the given vector equations step by step. Given: 1. \(\vec{a} \times \vec{b} = \vec{c}\) 2. \(\vec{b} \times \vec{c} = \vec{a}\) 3. \(\vec{c} \neq \vec{0}\) ### Step 1: Understand the implications of the cross product ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

If vecaxxvecb=vecc,vecb xx vecc=veca, where vecc != vec0, then

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc]^2 , then lambda is equal to

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc

If veca is parallel to vecb xx vecc, then (veca xx vecb) .(veca xx vecc) is equal to (a) |veca|^(2)(vecb.vecc) (b) |vecb|^(2)(veca .vecc) (c) |vecc|^(2)(veca.vecb) (d) none of these

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

Let veca , vecb,vecc be three vectors such that veca bot ( vecb + vecc), vecb bot ( vecc + veca) and vecc bot ( veca + vecb) , " if " |veca| =1 , |vecb| =2 , |vecc| =3 , " then " | veca + vecb + vecc| is,

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. if side vec(AB) of an equilateral triangle ABC lying in the x-y plane ...

    Text Solution

    |

  2. The angles of a triangle , two of whose sides are respresented by vect...

    Text Solution

    |

  3. veca ,vecb and vecc are unimodular and coplanar. A unit vector vecd is...

    Text Solution

    |

  4. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  5. Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(vec...

    Text Solution

    |

  6. if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 ...

    Text Solution

    |

  7. Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a ...

    Text Solution

    |

  8. If veca, vecb and vecc are three unit vectors such that veca xx (vecb ...

    Text Solution

    |

  9. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  10. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to (a)[veca...

    Text Solution

    |

  11. The scalars l and m such that lveca + m vecb =vecc, " where " veca, ve...

    Text Solution

    |

  12. If (veca xx vecb) xx (vecc xx vecd) . (veca xx vecd) =0 then which of ...

    Text Solution

    |

  13. A,B C and dD are four points such that vec (AB) = m(2 hati - 6 hatj +...

    Text Solution

    |

  14. If the vectors veca, vecb, vecc are non -coplanar and l,m,n are distin...

    Text Solution

    |

  15. Let vec(alpha)=ahati+bhatj+chatk, vec(beta)=bhati+chatj+ahatk and vec(...

    Text Solution

    |

  16. If vectors vecA=2hati+3hatj+4hatk, vecB=hati+hatj+5hatk and vecC form ...

    Text Solution

    |

  17. If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc=...

    Text Solution

    |

  18. If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

    Text Solution

    |

  19. A vector (vecd) is equally inclined to three vectors veca= hati - hatj...

    Text Solution

    |

  20. A parallelogram is constructed on the vectors veca=3vecalpha-vecbeta, ...

    Text Solution

    |