Home
Class 12
MATHS
If the vectors veca, vecb, vecc are non ...

If the vectors `veca, vecb, vecc` are non -coplanar and `l,m,n` are distinct scalars such that
`[(lveca+mvecb+nvecc, lvecb+mvecc+nveca,lvecc+mveca+nvecb)]=0` then

A

` l + m + n=0`

B

roots of the equation `lx^(2) + mx + n =0` are equal

C

`l^(2)+m^(2) + n^(2) =0`

D

`l^(3) + m^(2) + n^(3) = 3 lmn `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given vectors and the condition provided. ### Step 1: Understand the Given Condition We have three non-coplanar vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). The distinct scalars are \(l\), \(m\), and \(n\). The condition given is: \[ \begin{vmatrix} l\vec{a} + m\vec{b} + n\vec{c} & l\vec{b} + m\vec{c} + n\vec{a} & l\vec{c} + m\vec{a} + n\vec{b} \end{vmatrix} = 0 \] ### Step 2: Set Up the Determinant We can express the vectors in terms of their components. Let's denote: - \(\vec{a} = (a_1, a_2, a_3)\) - \(\vec{b} = (b_1, b_2, b_3)\) - \(\vec{c} = (c_1, c_2, c_3)\) The determinant can be expressed as: \[ \begin{vmatrix} l a_1 + m b_1 + n c_1 & l b_1 + m c_1 + n a_1 & l c_1 + m a_1 + n b_1 \\ l a_2 + m b_2 + n c_2 & l b_2 + m c_2 + n a_2 & l c_2 + m a_2 + n b_2 \\ l a_3 + m b_3 + n c_3 & l b_3 + m c_3 + n a_3 & l c_3 + m a_3 + n b_3 \end{vmatrix} = 0 \] ### Step 3: Calculate the Determinant We can denote the rows of the determinant as follows: - First row: \((l a_1 + m b_1 + n c_1, l b_1 + m c_1 + n a_1, l c_1 + m a_1 + n b_1)\) - Second row: \((l a_2 + m b_2 + n c_2, l b_2 + m c_2 + n a_2, l c_2 + m a_2 + n b_2)\) - Third row: \((l a_3 + m b_3 + n c_3, l b_3 + m c_3 + n a_3, l c_3 + m a_3 + n b_3)\) ### Step 4: Apply Properties of Determinants Since the determinant is equal to zero, it implies that the rows are linearly dependent. This means that there exist scalars (not all zero) such that: \[ k_1 (l a_1 + m b_1 + n c_1) + k_2 (l b_1 + m c_1 + n a_1) + k_3 (l c_1 + m a_1 + n b_1) = 0 \] ### Step 5: Use the Identity for Cubes From the determinant condition, we can derive that: \[ l^3 + m^3 + n^3 - 3lmn = 0 \] This is a known identity that holds true if \(l + m + n = 0\). ### Step 6: Conclusion Thus, we conclude that: \[ l + m + n = 0 \] This means that the sum of the distinct scalars \(l\), \(m\), and \(n\) is equal to zero.

To solve the problem step by step, we will analyze the given vectors and the condition provided. ### Step 1: Understand the Given Condition We have three non-coplanar vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). The distinct scalars are \(l\), \(m\), and \(n\). The condition given is: \[ \begin{vmatrix} l\vec{a} + m\vec{b} + n\vec{c} & l\vec{b} + m\vec{c} + n\vec{a} & l\vec{c} + m\vec{a} + n\vec{b} ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. if side vec(AB) of an equilateral triangle ABC lying in the x-y plane ...

    Text Solution

    |

  2. The angles of a triangle , two of whose sides are respresented by vect...

    Text Solution

    |

  3. veca ,vecb and vecc are unimodular and coplanar. A unit vector vecd is...

    Text Solution

    |

  4. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  5. Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(vec...

    Text Solution

    |

  6. if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 ...

    Text Solution

    |

  7. Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a ...

    Text Solution

    |

  8. If veca, vecb and vecc are three unit vectors such that veca xx (vecb ...

    Text Solution

    |

  9. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  10. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to (a)[veca...

    Text Solution

    |

  11. The scalars l and m such that lveca + m vecb =vecc, " where " veca, ve...

    Text Solution

    |

  12. If (veca xx vecb) xx (vecc xx vecd) . (veca xx vecd) =0 then which of ...

    Text Solution

    |

  13. A,B C and dD are four points such that vec (AB) = m(2 hati - 6 hatj +...

    Text Solution

    |

  14. If the vectors veca, vecb, vecc are non -coplanar and l,m,n are distin...

    Text Solution

    |

  15. Let vec(alpha)=ahati+bhatj+chatk, vec(beta)=bhati+chatj+ahatk and vec(...

    Text Solution

    |

  16. If vectors vecA=2hati+3hatj+4hatk, vecB=hati+hatj+5hatk and vecC form ...

    Text Solution

    |

  17. If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc=...

    Text Solution

    |

  18. If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

    Text Solution

    |

  19. A vector (vecd) is equally inclined to three vectors veca= hati - hatj...

    Text Solution

    |

  20. A parallelogram is constructed on the vectors veca=3vecalpha-vecbeta, ...

    Text Solution

    |