Home
Class 12
MATHS
Let vec(alpha)=ahati+bhatj+chatk, vec(be...

Let `vec(alpha)=ahati+bhatj+chatk, vec(beta)=bhati+chatj+ahatk` and `vec(gamma)=chati+ahatj+bhatk` be three coplnar vectors with `a!=b`, and `vecv=hati+hatj+hatk`. Then `vecv` is perpendicular to

A

`vecalpha`

B

`vecbeta`

C

`vecgamma`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given vectors and determine which of them is perpendicular to the vector \( \vec{v} \). ### Step 1: Define the vectors We have the following vectors: - \( \vec{\alpha} = a \hat{i} + b \hat{j} + c \hat{k} \) - \( \vec{\beta} = b \hat{i} + c \hat{j} + a \hat{k} \) - \( \vec{\gamma} = c \hat{i} + a \hat{j} + b \hat{k} \) - \( \vec{v} = \hat{i} + \hat{j} + \hat{k} \) ### Step 2: Determine coplanarity condition The vectors \( \vec{\alpha}, \vec{\beta}, \vec{\gamma} \) are coplanar if the scalar triple product is zero. This can be represented using the determinant of a matrix formed by these vectors. ### Step 3: Set up the determinant We set up the determinant as follows: \[ \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} \] ### Step 4: Calculate the determinant Calculating the determinant, we expand it: \[ = a \begin{vmatrix} c & a \\ a & b \end{vmatrix} - b \begin{vmatrix} b & a \\ c & b \end{vmatrix} + c \begin{vmatrix} b & c \\ c & a \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} c & a \\ a & b \end{vmatrix} = cb - a^2 \) 2. \( \begin{vmatrix} b & a \\ c & b \end{vmatrix} = bb - ac = b^2 - ac \) 3. \( \begin{vmatrix} b & c \\ c & a \end{vmatrix} = ba - c^2 \) Putting it all together: \[ = a(cb - a^2) - b(b^2 - ac) + c(ba - c^2) \] ### Step 5: Simplify the determinant Expanding and simplifying gives us: \[ = acb - a^3 - b^3 + abc + abc - c^3 \] \[ = 3abc - (a^3 + b^3 + c^3) \] ### Step 6: Set the determinant to zero Since the vectors are coplanar, we set the determinant to zero: \[ 3abc - (a^3 + b^3 + c^3) = 0 \] ### Step 7: Use the identity for cubes From the identity \( a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) \), we can conclude that \( a + b + c = 0 \) or \( a^2 + b^2 + c^2 - ab - ac - bc = 0 \). ### Step 8: Check perpendicularity with \( \vec{v} \) To find if \( \vec{v} \) is perpendicular to \( \vec{\alpha}, \vec{\beta}, \vec{\gamma} \), we compute the dot products: 1. \( \vec{v} \cdot \vec{\alpha} = (1)(a) + (1)(b) + (1)(c) = a + b + c \) 2. \( \vec{v} \cdot \vec{\beta} = (1)(b) + (1)(c) + (1)(a) = b + c + a \) 3. \( \vec{v} \cdot \vec{\gamma} = (1)(c) + (1)(a) + (1)(b) = c + a + b \) Since \( a + b + c = 0 \), we conclude: \[ \vec{v} \cdot \vec{\alpha} = 0, \quad \vec{v} \cdot \vec{\beta} = 0, \quad \vec{v} \cdot \vec{\gamma} = 0 \] ### Conclusion Thus, \( \vec{v} \) is perpendicular to all three vectors \( \vec{\alpha}, \vec{\beta}, \vec{\gamma} \).

To solve the problem step by step, we will analyze the given vectors and determine which of them is perpendicular to the vector \( \vec{v} \). ### Step 1: Define the vectors We have the following vectors: - \( \vec{\alpha} = a \hat{i} + b \hat{j} + c \hat{k} \) - \( \vec{\beta} = b \hat{i} + c \hat{j} + a \hat{k} \) - \( \vec{\gamma} = c \hat{i} + a \hat{j} + b \hat{k} \) - \( \vec{v} = \hat{i} + \hat{j} + \hat{k} \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. if side vec(AB) of an equilateral triangle ABC lying in the x-y plane ...

    Text Solution

    |

  2. The angles of a triangle , two of whose sides are respresented by vect...

    Text Solution

    |

  3. veca ,vecb and vecc are unimodular and coplanar. A unit vector vecd is...

    Text Solution

    |

  4. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  5. Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(vec...

    Text Solution

    |

  6. if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 ...

    Text Solution

    |

  7. Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a ...

    Text Solution

    |

  8. If veca, vecb and vecc are three unit vectors such that veca xx (vecb ...

    Text Solution

    |

  9. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  10. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to (a)[veca...

    Text Solution

    |

  11. The scalars l and m such that lveca + m vecb =vecc, " where " veca, ve...

    Text Solution

    |

  12. If (veca xx vecb) xx (vecc xx vecd) . (veca xx vecd) =0 then which of ...

    Text Solution

    |

  13. A,B C and dD are four points such that vec (AB) = m(2 hati - 6 hatj +...

    Text Solution

    |

  14. If the vectors veca, vecb, vecc are non -coplanar and l,m,n are distin...

    Text Solution

    |

  15. Let vec(alpha)=ahati+bhatj+chatk, vec(beta)=bhati+chatj+ahatk and vec(...

    Text Solution

    |

  16. If vectors vecA=2hati+3hatj+4hatk, vecB=hati+hatj+5hatk and vecC form ...

    Text Solution

    |

  17. If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc=...

    Text Solution

    |

  18. If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

    Text Solution

    |

  19. A vector (vecd) is equally inclined to three vectors veca= hati - hatj...

    Text Solution

    |

  20. A parallelogram is constructed on the vectors veca=3vecalpha-vecbeta, ...

    Text Solution

    |