Home
Class 12
MATHS
If vectors vecA=2hati+3hatj+4hatk, vecB=...

If vectors `vecA=2hati+3hatj+4hatk, vecB=hati+hatj+5hatk and vecC` form a left handed system then `vecC` is (A) `11hati-6hatj-hatk` (B) `-11hati+6hatj+hatk` (C) `-11hati+6hatj-hatk` (D) `-11hati+6hatj-hatk`

A

`11 hati - 6 hatj - hatk`

B

`-11 hati - 6 hatj - hatk`

C

`-11 hati - 6 hatj + hatk`

D

`-11 hati + 6 hatj - hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \( \vec{C} \) such that the vectors \( \vec{A}, \vec{B}, \) and \( \vec{C} \) form a left-handed system. This means that the scalar triple product \( \vec{A} \cdot (\vec{B} \times \vec{C}) \) must be negative. ### Step-by-step Solution: 1. **Define the vectors**: \[ \vec{A} = 2\hat{i} + 3\hat{j} + 4\hat{k} \] \[ \vec{B} = \hat{i} + \hat{j} + 5\hat{k} \] Let \( \vec{C} = x\hat{i} + y\hat{j} + z\hat{k} \). 2. **Calculate the cross product \( \vec{A} \times \vec{B} \)**: \[ \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 1 & 1 & 5 \end{vmatrix} \] Expanding this determinant: \[ = \hat{i} \left( 3 \cdot 5 - 4 \cdot 1 \right) - \hat{j} \left( 2 \cdot 5 - 4 \cdot 1 \right) + \hat{k} \left( 2 \cdot 1 - 3 \cdot 1 \right) \] \[ = \hat{i} (15 - 4) - \hat{j} (10 - 4) + \hat{k} (2 - 3) \] \[ = 11\hat{i} - 6\hat{j} - 1\hat{k} \] Thus, \[ \vec{A} \times \vec{B} = 11\hat{i} - 6\hat{j} - \hat{k} \] 3. **Dot product with \( \vec{C} \)**: We need to find \( \vec{C} \) such that: \[ \vec{A} \times \vec{B} \cdot \vec{C} < 0 \] This gives: \[ (11\hat{i} - 6\hat{j} - \hat{k}) \cdot (x\hat{i} + y\hat{j} + z\hat{k}) < 0 \] \[ = 11x - 6y - z < 0 \] 4. **Check the options**: We need to evaluate the expression \( 11x - 6y - z \) for each option to see which one satisfies the inequality. - **Option A**: \( \vec{C} = 11\hat{i} - 6\hat{j} - \hat{k} \) \[ x = 11, y = -6, z = -1 \Rightarrow 11(11) - 6(-6) - (-1) = 121 + 36 + 1 = 158 \quad (\text{not valid}) \] - **Option B**: \( \vec{C} = -11\hat{i} + 6\hat{j} + \hat{k} \) \[ x = -11, y = 6, z = 1 \Rightarrow 11(-11) - 6(6) - 1 = -121 - 36 - 1 = -158 \quad (\text{valid}) \] - **Option C**: \( \vec{C} = -11\hat{i} + 6\hat{j} - \hat{k} \) \[ x = -11, y = 6, z = -1 \Rightarrow 11(-11) - 6(6) - (-1) = -121 - 36 + 1 = -156 \quad (\text{valid}) \] - **Option D**: \( \vec{C} = -11\hat{i} + 6\hat{j} - \hat{k} \) \[ x = -11, y = 6, z = -1 \Rightarrow 11(-11) - 6(6) - (-1) = -121 - 36 + 1 = -156 \quad (\text{valid}) \] 5. **Conclusion**: The correct answer is **Option B**: \( \vec{C} = -11\hat{i} + 6\hat{j} + \hat{k} \).

To solve the problem, we need to find the vector \( \vec{C} \) such that the vectors \( \vec{A}, \vec{B}, \) and \( \vec{C} \) form a left-handed system. This means that the scalar triple product \( \vec{A} \cdot (\vec{B} \times \vec{C}) \) must be negative. ### Step-by-step Solution: 1. **Define the vectors**: \[ \vec{A} = 2\hat{i} + 3\hat{j} + 4\hat{k} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. if side vec(AB) of an equilateral triangle ABC lying in the x-y plane ...

    Text Solution

    |

  2. The angles of a triangle , two of whose sides are respresented by vect...

    Text Solution

    |

  3. veca ,vecb and vecc are unimodular and coplanar. A unit vector vecd is...

    Text Solution

    |

  4. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  5. Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(vec...

    Text Solution

    |

  6. if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 ...

    Text Solution

    |

  7. Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a ...

    Text Solution

    |

  8. If veca, vecb and vecc are three unit vectors such that veca xx (vecb ...

    Text Solution

    |

  9. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  10. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to (a)[veca...

    Text Solution

    |

  11. The scalars l and m such that lveca + m vecb =vecc, " where " veca, ve...

    Text Solution

    |

  12. If (veca xx vecb) xx (vecc xx vecd) . (veca xx vecd) =0 then which of ...

    Text Solution

    |

  13. A,B C and dD are four points such that vec (AB) = m(2 hati - 6 hatj +...

    Text Solution

    |

  14. If the vectors veca, vecb, vecc are non -coplanar and l,m,n are distin...

    Text Solution

    |

  15. Let vec(alpha)=ahati+bhatj+chatk, vec(beta)=bhati+chatj+ahatk and vec(...

    Text Solution

    |

  16. If vectors vecA=2hati+3hatj+4hatk, vecB=hati+hatj+5hatk and vecC form ...

    Text Solution

    |

  17. If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc=...

    Text Solution

    |

  18. If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

    Text Solution

    |

  19. A vector (vecd) is equally inclined to three vectors veca= hati - hatj...

    Text Solution

    |

  20. A parallelogram is constructed on the vectors veca=3vecalpha-vecbeta, ...

    Text Solution

    |