Home
Class 12
MATHS
If veca=xhati + y hatj + zhatk, vecb= yh...

If `veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk ` and `vecc= zhati + xhatj+ yhatk `, `" then " vecaxx (vecbxx vecc) `is
(a)parallel to ` ( y- z) hati + (z - x) hatj + (x -y) hatk` (b)orthogonal to `hati + hatj + hatk` (c)orthogonal to ` ( y+z) hati + ( z + x) hatj + ( x + y) hatk` (d)orthogonal to `xhati + yhatj + zhatk`

A

parallel to ` ( y- z) hati + (z - x) hatj + (x -y) hatk`

B

orthogonal to `hati + hatj + hatk`

C

orthogonal to ` ( y+z) hati + ( z + x) hatj + ( x + y) hatk`

D

orthogonal to `xhati + yhatj + zhatk`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \( \vec{v} = \vec{a} \times (\vec{b} \times \vec{c}) \) and analyze its properties with respect to the given options. ### Step 1: Define the vectors Given: \[ \vec{a} = x \hat{i} + y \hat{j} + z \hat{k} \] \[ \vec{b} = y \hat{i} + z \hat{j} + x \hat{k} \] \[ \vec{c} = z \hat{i} + x \hat{j} + y \hat{k} \] ### Step 2: Use the vector triple product identity We can use the identity: \[ \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \] ### Step 3: Calculate \( \vec{a} \cdot \vec{b} \) and \( \vec{a} \cdot \vec{c} \) First, calculate \( \vec{a} \cdot \vec{b} \): \[ \vec{a} \cdot \vec{b} = (x \hat{i} + y \hat{j} + z \hat{k}) \cdot (y \hat{i} + z \hat{j} + x \hat{k}) = xy + yz + zx \] Next, calculate \( \vec{a} \cdot \vec{c} \): \[ \vec{a} \cdot \vec{c} = (x \hat{i} + y \hat{j} + z \hat{k}) \cdot (z \hat{i} + x \hat{j} + y \hat{k}) = xz + xy + yz \] ### Step 4: Substitute into the vector triple product formula Now substitute back into the formula: \[ \vec{v} = (xz + xy + yz) \vec{b} - (xy + yz + zx) \vec{c} \] Substituting \( \vec{b} \) and \( \vec{c} \): \[ \vec{v} = (xz + xy + yz)(y \hat{i} + z \hat{j} + x \hat{k}) - (xy + yz + zx)(z \hat{i} + x \hat{j} + y \hat{k}) \] ### Step 5: Expand the expression Expanding both terms: \[ \vec{v} = (xz + xy + yz)(y \hat{i}) + (xz + xy + yz)(z \hat{j}) + (xz + xy + yz)(x \hat{k}) - (xy + yz + zx)(z \hat{i}) - (xy + yz + zx)(x \hat{j}) - (xy + yz + zx)(y \hat{k}) \] ### Step 6: Combine like terms Combine the coefficients of \( \hat{i} \), \( \hat{j} \), and \( \hat{k} \): \[ \vec{v} = [(xz + xy + yz)y - (xy + yz + zx)z] \hat{i} + [(xz + xy + yz)z - (xy + yz + zx)x] \hat{j} + [(xz + xy + yz)x - (xy + yz + zx)y] \hat{k} \] ### Step 7: Factor out common terms The expression can be simplified to: \[ \vec{v} = l \left( (y - z) \hat{i} + (z - x) \hat{j} + (x - y) \hat{k} \right) \] where \( l = xz + xy + yz \). ### Step 8: Analyze the options 1. **Option (a)**: \( \vec{v} \) is parallel to \( (y - z) \hat{i} + (z - x) \hat{j} + (x - y) \hat{k} \) - **True**. 2. **Option (b)**: Check if \( \vec{v} \) is orthogonal to \( \hat{i} + \hat{j} + \hat{k} \): \[ \vec{v} \cdot (\hat{i} + \hat{j} + \hat{k}) = (y - z) + (z - x) + (x - y) = 0 \quad \text{(True)} \] 3. **Option (c)**: Check if \( \vec{v} \) is orthogonal to \( (y + z) \hat{i} + (z + x) \hat{j} + (x + y) \hat{k} \): \[ \vec{v} \cdot [(y + z) \hat{i} + (z + x) \hat{j} + (x + y) \hat{k}] = 0 \quad \text{(True)} \] 4. **Option (d)**: Check if \( \vec{v} \) is orthogonal to \( \vec{a} \): \[ \vec{v} \cdot \vec{a} = 0 \quad \text{(True)} \] ### Conclusion All options are correct.

To solve the problem, we need to find the vector \( \vec{v} = \vec{a} \times (\vec{b} \times \vec{c}) \) and analyze its properties with respect to the given options. ### Step 1: Define the vectors Given: \[ \vec{a} = x \hat{i} + y \hat{j} + z \hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

If veca=7hati+3hatj-5hatk, vecb=2hati+5hatj-hatk and vecc-hati+2hatj+4hatk, then verify that vecaxx(b+c)=vecaxxvecb+vecaxxvecc

Let veca=hati-hatk, vecb=xhati+hatj+(1-x)hatk and vecc=yhati+xhatj+(1+x-y)hatk , then [veca vecb vecc] depends on

Let veca=hati-hatk, vecb=xhati+hatj+(1-x)hatk and vecc=yhati+xhatj+(1+x-y)hatk , then [veca vecb vecc] depends on

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

if veca=hati-hatj-3hatk, vecb=4hati-3hatj+hatk and vecc=2hati+hatj+2hatk, verify that vecaxx(vecb+vecc)=vecaxxvecb+vecaxxvecc

If vecaa=hati+2hatj+3hatk, vecb=2hati-hatj+hatk and vecc=hati+hatj-2hatk, verify that vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc.

If veca=2hati+5hatj-7hatk, vecb=-3hati+4hatj+hatk and vecc=hati-2hatj-3hatk , show that ((vecaxxvecb)xxvecc), vecaxx(vecbxxvecc) are not same .

If veca=2hati+2hatj-hatk, vecb=3hati-hatj-hatk and vecc=hati+2hatj-3hatk then verify that vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc .

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. if side vec(AB) of an equilateral triangle ABC lying in the x-y plane ...

    Text Solution

    |

  2. The angles of a triangle , two of whose sides are respresented by vect...

    Text Solution

    |

  3. veca ,vecb and vecc are unimodular and coplanar. A unit vector vecd is...

    Text Solution

    |

  4. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  5. Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(vec...

    Text Solution

    |

  6. if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 ...

    Text Solution

    |

  7. Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a ...

    Text Solution

    |

  8. If veca, vecb and vecc are three unit vectors such that veca xx (vecb ...

    Text Solution

    |

  9. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  10. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to (a)[veca...

    Text Solution

    |

  11. The scalars l and m such that lveca + m vecb =vecc, " where " veca, ve...

    Text Solution

    |

  12. If (veca xx vecb) xx (vecc xx vecd) . (veca xx vecd) =0 then which of ...

    Text Solution

    |

  13. A,B C and dD are four points such that vec (AB) = m(2 hati - 6 hatj +...

    Text Solution

    |

  14. If the vectors veca, vecb, vecc are non -coplanar and l,m,n are distin...

    Text Solution

    |

  15. Let vec(alpha)=ahati+bhatj+chatk, vec(beta)=bhati+chatj+ahatk and vec(...

    Text Solution

    |

  16. If vectors vecA=2hati+3hatj+4hatk, vecB=hati+hatj+5hatk and vecC form ...

    Text Solution

    |

  17. If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc=...

    Text Solution

    |

  18. If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

    Text Solution

    |

  19. A vector (vecd) is equally inclined to three vectors veca= hati - hatj...

    Text Solution

    |

  20. A parallelogram is constructed on the vectors veca=3vecalpha-vecbeta, ...

    Text Solution

    |