Home
Class 12
MATHS
Let vecr be a non - zero vector satisfyi...

Let `vecr` be a non - zero vector satisfying `vecr.veca = vecr.vecb =vecr.vecc =0` for given non- zero vectors `veca vecb and vecc`
Statement 1: `[ veca - vecb vecb - vecc vecc- veca] =0`
Statement 2: `[veca vecb vecc] =0`

A

Both the statements are true and statement 2 is the correct explanation for statement 1.

B

Both statements are true but statement 2 is not the correct explanation for statement 1.

C

Statement 1 is true and Statement 2 is false

D

Statement 1 is false and Statement 2 is true.

Text Solution

Verified by Experts

The correct Answer is:
b

`vecr.veca= vecr.vecb= vecr.vecc=0 ` only if `veca,vecb and vecc` are coplanar, thus,
`[veca vecb vecc] =0`
Hence, statement 2 is true
Also `[veca -vecb vecb-vecc vecc-veca]=0 " even " if [veca vecb vecc] ne 0`
Hence, statement 2 is not the correct explanation for statement 1.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Martrix - match type|10 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises MCQ|134 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr , then the value of [(veca, vecb, vecc)] is

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

If vecr.veca=0,vecr.vecb=0andvecr.vecc=0 for some non-zero vector vecr , then the value of veca.(vecbxxvecc) is…… .

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc = |veca||vecb||vecc| holds if and only if

If veca,vecb,vecc are non coplanar non zero vectors and vecn.veca=vecn.vecb=vecn.vecc=0, Show that vecn is a zero vector

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

Find vector vecr if vecr.veca=m and vecrxxvecb=vecc, where veca.vecb!=0

If vecr.veca=vecr.vecb=vecr.vecc=1/2 for some non zero vector vecr and veca,vecb,vecc are non coplanar, then the area of the triangle whose vertices are A(veca),B(vecb) and C(vecc) is

If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr satisfying vecr.veca=vecr.vecb=vecr.vecc=1 , is