Home
Class 12
MATHS
Consider three vectors veca , vecb and v...

Consider three vectors `veca , vecb and vecc`
Statement 1: `vecaxxvecb = ((hatixxveca).vecb)hati+ ((hatj xx veca).vecb)hatj + (hatk xxveca).vecb)hatk`
Statement 2: `vecc= (hati.vecc)hati+ (hatj .vecc) hatj + (hatk. vecc)hatk`

A

Both the statements are true and statement 2 is the correct explanation for statement 1.

B

Both statements are true but statement 2 is not the correct explanation for statement 1.

C

Statement 1 is true and Statement 2 is false

D

Statement 1 is false and Statement 2 is true.

Text Solution

Verified by Experts

The correct Answer is:
a

Statement 2 is true (see properties of dot product)
Also ` (hatixxveca) .vecb=hati. (veca xxvecb)`
`Rightarrow veca xxvecb = (hati. (vecaxxvecb))hati+ (hatj. (vecaxxvecb))hatj + (hatk. (veca xx vecb))hatk`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Martrix - match type|10 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises MCQ|134 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

Statement 1: If veca, vecb are non zero and non collinear vectors, then vecaxxvecb=[(veca, vecb, hati)]hati+[(veca, vecb, hatj)]hatj+[(veca, vecb, hatk)]hatk Statement 2: For any vector vecr vecr=(vecr.hati)hati+(vecr.hatj)hatj+(vecr.hatk)hatk

If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -hatk , " then " vecb is (a) hati - hatj + hatk (b) 2hati - hatk (c) hati (d) 2hati

If veca=(hati+hatj+hatk), and veca.vecb=1 and vecaxxvecb = -(hati-hatk) then vecb is (A) hati-hatj+hatk (B) 2hatj-hatk (C) hatj (D) 2hati

If veca=hati+hatj, vecb=hatj+hatk, vec c hatk+hati , a unit vector parallel to veca+vecb+vecc .

Let veca=hati-hatj, vecb=hatj-hatk, vecc=hatk-hati. If hatd is a unit vector such that veca.hatd=0=[vecb vecc vecd] then hatd equals

vectors veca,vecb and vecc are of the same length and when taken pair-wise they form equal angles. If veca=hati+hatj and vecb=hatj+hatk then find vector vecc .

Find the projection of vecb+vecc on veca where veca=hati+2hatj+hatk, vecb=hati+3hatj+hatk and vecc=hati+hatk .

Statement 1 : Let A(veca), B(vecb) and C(vecc) be three points such that veca = 2hati +hatk , vecb = 3hati -hatj +3hatk and vecc =-hati +7hatj -5hatk . Then OABC is tetrahedron. Statement 2 : Let A(veca) , B(vecb) and C(vecc) be three points such that vectors veca, vecb and vecc are non-coplanar. Then OABC is a tetrahedron, where O is the origin.

find vecA xx vecB if vecA = hati - 2 hatj + 4 hatk and vecB = 3 hati - hatj + 2hatk

Let veca = hati + hatj +hatjk, vecc =hatj - hatk and a vector vecb be such that veca xx vecb = vecc and veca.vecb=3 . Then |vecb| equals: