Home
Class 12
MATHS
Vectors vecx,vecy,vecz each of magnitude...

Vectors `vecx,vecy,vecz` each of magnitude `sqrt(2)` make angles of `60^0` with each other. If `vecx xx(vecy xx vecz) = veca, vecy xx( vecz xx vecx)=vecb` and `vecx xx vecy=vecc,` find `vecx, vecy, vecz` in terms of `veca, vecb` and `vecc`.

A

`1/2 [(veca + vecc)xxvecb- vecb -veca]`

B

`1/2 [(veca - vecc)xxvecb+ vecb +veca]`

C

`1/2 [(veca - vecb)xxvecc+ vecb +veca]`

D

`1/2[(veca-vecc)xx veca + vecb -veca]`

Text Solution

Verified by Experts

The correct Answer is:
c

Given that `|vecx|= |vecy|=|vecz|=sqrt2` and they are inclined at an angle of `60^(@)` with each other.
`vecx.vecy=vecy.vecz=vecz.vecx=sqrt2.sqrt2cos 60^(@)=1 vecx xx (vecyxxvecz)=veca`
`or (vecx.vecz)vecy-(vecx.vecy)vecz=vecaor vecy-vecz=veca` (i)
similarly `vecyxx(vecz xxvecx)=vecb Rightarrow vecz-vecx=vecb`
`vecy=veca+vecz,vecx=vecz-vecb`
Now , ` vecx, xx vecy=vecc`
` Rightarrow (vecz - vecb) xx (vecz + veca) = vecc`
` or vecz xx (veca xx vecb) = vecc + (vecb xxx veca)`
` or (veca + vecb) xx {vecz xx (veca + vecb)} `
`= (veca xx vecb) xx vecc+ (veca +vecb) xx (vecbxxveca)`
`or (veca + vecb) ^(2)vecz - {(veca + vecb).vecz} (veca + vecb)`
`= (veca + vecb) xx vecc + |veca|^(2)vecb-|vecb|^(2)veca`
`+ (veca.vecb) (vecb.veca)`
`Now , (i) Rightarrow |veca|^(2)= |vecy-vecz|^(2)=2 +2-2=2`
similarly , (ii) `Rightarrow |vecb|^(2)=2`
Also (i) and (ii) `Rightarrow veca+vecb=vecy-vecx`
`Rightarrow |veca+vecb|^(2)=2`
`Also (veca +vecb).vecz= (vecy -vecx).vecz = vecy.vecz-vecx.vecz`
1-1=0
`and veca.vecb= (vecy.vecz). (vecz-vecx)`
` =vecy.vecz-vecx.vecy-|vecz|^(2)+vecx.vecz= -1`
Thus from (v) , we have
`2vecz=(veca+vecb)xxvecc+2(vecb-veca)-(vecb-veca)`
`or vecz= (1//2)[(veca + vecb) xx vecc + vecb-veca]`
`vecy= veca+vecz= (1//2)[(veca+vecb)xxvecc+vecb+veca]`
`and vecx=vecz-vecb=(1//2)[(veca+vecb)xxvecc-(veca+vecb)]`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Martrix - match type|10 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Integer type|17 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecx xx (vecyxxvecz) = veca, vecy xx (veczxxvecx) = vecb and vecx xx vecy = vecc . Find vecx, vecy, vecz in terms of veca, vecb, vecc .

Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecx xx (vecyxxvecz) = veca, vecy xx (veczxxvecx) = vecb and vecx xx vecy = vecc . Find vecx, vecy, vecz in terms of veca, vecb, vecc .

Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecxxx(vecyxx(veczxxvecx)=vecb nd vecxxxvecy=vecc, find vecx, vecy, vecz in terms of veca,vecb and vecc .

If vecx xxvecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 and vecy.vecz=1 then find x,y,z in terms of veca,vecb and gamma .

If vecx * xvecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 and vecy.vecz=1 then find x,y,z in terms of veca,vecb and gamma.

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If vecr=a(vecm xx vecn)+b(vecn xx vecI)+c(vecI xx vecm) and [vecI vecm vecn]=4," find "(a+b+c)/(vecr*(vecI+vecm+vecn)) :

If vecr=a(vecm xx vecn)+b(vecn xx vecI)+c(vecI xx vecm) and [vecI vecm vecn]=4," find "(a+b+c)/(vecr*(vecI+vecm+vecn)) :

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Comprehension type
  1. Let vecu, vecv and vecw be three unit vectors such that vecu + vecv + ...

    Text Solution

    |

  2. Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 w...

    Text Solution

    |

  3. Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 w...

    Text Solution

    |

  4. Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 w...

    Text Solution

    |

  5. If vecx xx vecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 ...

    Text Solution

    |

  6. If vecx xx vecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 ...

    Text Solution

    |

  7. Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 w...

    Text Solution

    |

  8. Given two orthogonal vectors vecA and vecB each of length unity. Let v...

    Text Solution

    |

  9. Given two orthogonal vectors vecA and vecB each of length unity. Let v...

    Text Solution

    |

  10. Given two orthogonal vectors vecA and VecB each of length unity. Let v...

    Text Solution

    |

  11. Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vec...

    Text Solution

    |

  12. Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vec...

    Text Solution

    |

  13. Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vec...

    Text Solution

    |

  14. Consider a triangular pyramid ABCD the position vectors of whose agula...

    Text Solution

    |

  15. Consider a triangular pyramid ABCD the position vectors of whose agula...

    Text Solution

    |

  16. Consider a triangular pyramid ABCD the position vectors of whose agula...

    Text Solution

    |

  17. Vertices of a parallelogram taken in order are A, ( 2,-1,4) , B (1,0,-...

    Text Solution

    |

  18. Vertices of a parallelogram taken in order are A( 2,-1,4)B(1,0,-1...

    Text Solution

    |

  19. Vertices of a parallelogram taken in order are A, ( 2,-1,4) , B (1,0,-...

    Text Solution

    |

  20. Let vecr be a position vector of a variable point in Cartesian OXY pla...

    Text Solution

    |