Home
Class 12
MATHS
Vectors vecx,vecy,vecz each of magnitude...

Vectors `vecx,vecy,vecz` each of magnitude `sqrt(2)` make angles of `60^0` with each other. If `vecx xx (vecyxxvecz) = veca, vecy xx (veczxxvecx) = vecb` and `vecx xx vecy = vecc`. Find `vecx, vecy, vecz` in terms of `veca, vecb, vecc`.

A

`gamma/(|veca xxvecb|^(2))[veca+vecbxx(vecaxxvecb)]`

B

`gamma/(|veca xxvecb|^(2))[veca+vecb-vecaxx(vecaxxvecb)]`

C

`gamma/(|veca xxvecb|^(2))[veca+vecb+vecaxx(vecaxxvecb)]`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
c

Given
`vecx xx vecy=veca` (i)
`vecy xx vecz=vecb` (ii)
`vecx.vecb =gamma` (iii)
`vecx.vecy=1` (iv)
`vecy .vecz=1` (v)
from (ii) , `vecx.(vecy xx vecz) =vecx .vecb=gamma Rightarrow [vecx vecy vecz] = gamma`
From (i) and (ii) , `(vecx xx vecy) xx (vecy xx vecz) =veca xx vecb`
` [vecx vecy vecz]-[vecy vecy vecz] = veca xx vecb`
` or vecy = (veca xx vecb)/ gamma`
Also from (i), we get ` (vecx xx vecy) xx vecy =veca xx vecy `
` or (vecx.vecy) vecy- (vecy.vecy)vecx =veca xx vecy`
`or vecx = (1//|vecy|^(2))(vecy - veca xx vecy)`
`gamma^(2)/(|vecaxx vecb|^(2))[(vecaxxvecb)/gamma-(vecaxx(vecaxxvecb))/gamma]`
`gamma/(|veca xx vecb|^(2))[veca xx vecb-vecaxx (veca xx vecb)]`
Also from (ii) , `(vecy xx vecz)xxvecy = vecb xx vecy`
`or |vecy|^(2)vecz-(vecz.vecy)vecy= vecbxxvecy`
`or vecz= 1/(|vecy|^(2))[vecy+vecb xx vecy]`
`gamma/(|vecaxxvecb|^(2))[vecaxxvecb +vecb xx (veca xx vecb)]`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Martrix - match type|10 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Integer type|17 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecxxx(vecyxx(veczxxvecx)=vecb nd vecxxxvecy=vecc, find vecx, vecy, vecz in terms of veca,vecb and vecc .

If vecx xxvecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 and vecy.vecz=1 then find x,y,z in terms of veca,vecb and gamma .

If vecx * xvecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 and vecy.vecz=1 then find x,y,z in terms of veca,vecb and gamma.

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

If vecx.veca=0vecx.vecb=0 and vecx.vecc=0 for some non zero vector vecx then show that [veca vecb vecc]=0

If vecx.veca=0vecx.vecb=0 and vecx.vecc=0 for some non zero vector vecx then show that [veca vecb vecc]=0

given that veca. vecb = veca.vecc, veca xx vecb= veca xx vecc and veca is not a zero vector. Show that vecb=vecc .

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Comprehension type
  1. If vecx xx vecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 ...

    Text Solution

    |

  2. If vecx xx vecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 ...

    Text Solution

    |

  3. Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 w...

    Text Solution

    |

  4. Given two orthogonal vectors vecA and vecB each of length unity. Let v...

    Text Solution

    |

  5. Given two orthogonal vectors vecA and vecB each of length unity. Let v...

    Text Solution

    |

  6. Given two orthogonal vectors vecA and VecB each of length unity. Let v...

    Text Solution

    |

  7. Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vec...

    Text Solution

    |

  8. Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vec...

    Text Solution

    |

  9. Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vec...

    Text Solution

    |

  10. Consider a triangular pyramid ABCD the position vectors of whose agula...

    Text Solution

    |

  11. Consider a triangular pyramid ABCD the position vectors of whose agula...

    Text Solution

    |

  12. Consider a triangular pyramid ABCD the position vectors of whose agula...

    Text Solution

    |

  13. Vertices of a parallelogram taken in order are A, ( 2,-1,4) , B (1,0,-...

    Text Solution

    |

  14. Vertices of a parallelogram taken in order are A( 2,-1,4)B(1,0,-1...

    Text Solution

    |

  15. Vertices of a parallelogram taken in order are A, ( 2,-1,4) , B (1,0,-...

    Text Solution

    |

  16. Let vecr be a position vector of a variable point in Cartesian OXY pla...

    Text Solution

    |

  17. Let vecr be a position vector of a variable point in Cartesian OXY pla...

    Text Solution

    |

  18. Let vecr be a position vector of a variable point in Cartesian OXY pla...

    Text Solution

    |

  19. Ab, AC and AD are three adjacent edges of a parallelpiped. The diagona...

    Text Solution

    |

  20. Ab, AC and AD are three adjacent edges of a parallelpiped. The diagona...

    Text Solution

    |