Home
Class 12
MATHS
Given two vectors veca= -hati +hatj + 2h...

Given two vectors `veca= -hati +hatj + 2hatk and vecb =- hati - 2 hatj -hatk`
Find
a. `vecaxxvecb` then use this to find the area of the triangle.
b. The area of the parallelogram
c. The area of a paralleogram whose diagonals are
2 veca and 4vecb

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will break it down into parts as specified in the question. ### Given Vectors: - \(\vec{a} = -\hat{i} + \hat{j} + 2\hat{k}\) - \(\vec{b} = -\hat{i} - 2\hat{j} - \hat{k}\) ### Part (a): Find \(\vec{a} \times \vec{b}\) and the area of the triangle. 1. **Calculate the Cross Product \(\vec{a} \times \vec{b}\)**: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 1 & 2 \\ -1 & -2 & -1 \end{vmatrix} \] Expanding the determinant: \[ = \hat{i} \begin{vmatrix} 1 & 2 \\ -2 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} -1 & 2 \\ -1 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} -1 & 1 \\ -1 & -2 \end{vmatrix} \] \[ = \hat{i} (1 \cdot -1 - 2 \cdot -2) - \hat{j} (-1 \cdot -1 - 2 \cdot -1) + \hat{k} (-1 \cdot -2 - 1 \cdot -1) \] \[ = \hat{i} (-1 + 4) - \hat{j} (1 + 2) + \hat{k} (2 + 1) \] \[ = 3\hat{i} - 3\hat{j} + 3\hat{k} \] Therefore, \[ \vec{a} \times \vec{b} = 3\hat{i} - 3\hat{j} + 3\hat{k} \] 2. **Find the Magnitude of \(\vec{a} \times \vec{b}\)**: \[ |\vec{a} \times \vec{b}| = \sqrt{(3)^2 + (-3)^2 + (3)^2} = \sqrt{9 + 9 + 9} = \sqrt{27} = 3\sqrt{3} \] 3. **Calculate the Area of the Triangle**: The area \(A\) of the triangle formed by vectors \(\vec{a}\) and \(\vec{b}\) is given by: \[ A = \frac{1}{2} |\vec{a} \times \vec{b}| \] \[ A = \frac{1}{2} \times 3\sqrt{3} = \frac{3\sqrt{3}}{2} \] ### Part (b): Find the area of the parallelogram. 1. **Area of the Parallelogram**: The area \(A_p\) of the parallelogram formed by vectors \(\vec{a}\) and \(\vec{b}\) is given by: \[ A_p = |\vec{a} \times \vec{b}| \] From the previous calculation, we have: \[ A_p = 3\sqrt{3} \] ### Part (c): Find the area of a parallelogram whose diagonals are \(2\vec{a}\) and \(4\vec{b}\). 1. **Calculate the Diagonals**: \[ \text{Diagonal 1} = 2\vec{a} = 2(-\hat{i} + \hat{j} + 2\hat{k}) = -2\hat{i} + 2\hat{j} + 4\hat{k} \] \[ \text{Diagonal 2} = 4\vec{b} = 4(-\hat{i} - 2\hat{j} - \hat{k}) = -4\hat{i} - 8\hat{j} - 4\hat{k} \] 2. **Calculate the Cross Product of the Diagonals**: \[ \text{Let } \vec{d_1} = -2\hat{i} + 2\hat{j} + 4\hat{k}, \quad \vec{d_2} = -4\hat{i} - 8\hat{j} - 4\hat{k} \] \[ \vec{d_1} \times \vec{d_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 2 & 4 \\ -4 & -8 & -4 \end{vmatrix} \] Expanding the determinant: \[ = \hat{i} \begin{vmatrix} 2 & 4 \\ -8 & -4 \end{vmatrix} - \hat{j} \begin{vmatrix} -2 & 4 \\ -4 & -4 \end{vmatrix} + \hat{k} \begin{vmatrix} -2 & 2 \\ -4 & -8 \end{vmatrix} \] \[ = \hat{i} (2 \cdot -4 - 4 \cdot -8) - \hat{j} (-2 \cdot -4 - 4 \cdot -4) + \hat{k} (-2 \cdot -8 - 2 \cdot -4) \] \[ = \hat{i} (-8 + 32) - \hat{j} (8 + 16) + \hat{k} (16 + 8) \] \[ = 24\hat{i} - 24\hat{j} + 24\hat{k} \] 3. **Find the Magnitude of \(\vec{d_1} \times \vec{d_2}\)**: \[ |\vec{d_1} \times \vec{d_2}| = \sqrt{(24)^2 + (-24)^2 + (24)^2} = \sqrt{576 + 576 + 576} = \sqrt{1728} = 24\sqrt{3} \] 4. **Calculate the Area of the Parallelogram**: The area \(A_{p2}\) of the parallelogram formed by the diagonals is given by: \[ A_{p2} = \frac{1}{2} |\vec{d_1} \times \vec{d_2}| \] \[ A_{p2} = \frac{1}{2} \times 24\sqrt{3} = 12\sqrt{3} \] ### Final Answers: - (a) Area of the triangle: \(\frac{3\sqrt{3}}{2}\) - (b) Area of the parallelogram: \(3\sqrt{3}\) - (c) Area of the parallelogram with diagonals: \(12\sqrt{3}\)

To solve the given problem step by step, we will break it down into parts as specified in the question. ### Given Vectors: - \(\vec{a} = -\hat{i} + \hat{j} + 2\hat{k}\) - \(\vec{b} = -\hat{i} - 2\hat{j} - \hat{k}\) ### Part (a): Find \(\vec{a} \times \vec{b}\) and the area of the triangle. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Integer type|17 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective type|19 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

Given two vectors veca=-hati + 2hatj + 2hatk and vecb =- 2hati + hatj + 2hatk find |vec a xx vec b|

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

find vecA xx vecB if vecA = hati - 2 hatj + 4 hatk and vecB = 3 hati - hatj + 2hatk

Find the scalar product of vectors veca=2hati-hatj+2hatk and vecb=hati-3hatj-5hatk

The angle between the two vectors vecA=hati+2hatj-hatk and vecB=-hati+hatj-2hatk

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

Find |vecaxxvecb| , if veca=2hati-7hatj+7hatk and vecb=3hati-2hatj+2hatk

If veca = (-hati + hatj - hatk) and vecb = (2hati- 2hatj + 2hatk) then find the unit vector in the direction of (veca + vecb) .

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

Find the resultant of vectors veca=hati-hatj+2hatk and vecb=hati+2hatj-4hatk . Find the unit vector in the direction of the resultant vector.