Home
Class 12
MATHS
Given two vectors veca=-hati + 2hatj + 2...

Given two vectors `veca=-hati + 2hatj + 2hatk and vecb =- 2hati + hatj + 2hatk`
find `|vec a xx vec b|`

Text Solution

AI Generated Solution

The correct Answer is:
To find the magnitude of the cross product of the two vectors \(\vec{a}\) and \(\vec{b}\), we can follow these steps: ### Step 1: Write down the vectors Given: \[ \vec{a} = -\hat{i} + 2\hat{j} + 2\hat{k} \] \[ \vec{b} = -2\hat{i} + \hat{j} + 2\hat{k} \] ### Step 2: Set up the determinant for the cross product The cross product \(\vec{a} \times \vec{b}\) can be calculated using the determinant of a 3x3 matrix: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 2 & 2 \\ -2 & 1 & 2 \end{vmatrix} \] ### Step 3: Calculate the determinant To calculate the determinant, we expand it: \[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} 2 & 2 \\ 1 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} -1 & 2 \\ -2 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} -1 & 2 \\ -2 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \(\hat{i}\): \[ \begin{vmatrix} 2 & 2 \\ 1 & 2 \end{vmatrix} = (2)(2) - (2)(1) = 4 - 2 = 2 \] 2. For \(\hat{j}\): \[ \begin{vmatrix} -1 & 2 \\ -2 & 2 \end{vmatrix} = (-1)(2) - (2)(-2) = -2 + 4 = 2 \] 3. For \(\hat{k}\): \[ \begin{vmatrix} -1 & 2 \\ -2 & 1 \end{vmatrix} = (-1)(1) - (2)(-2) = -1 + 4 = 3 \] Putting it all together: \[ \vec{a} \times \vec{b} = 2\hat{i} - 2\hat{j} + 3\hat{k} \] ### Step 4: Find the magnitude of the cross product The magnitude of \(\vec{a} \times \vec{b}\) is given by: \[ |\vec{a} \times \vec{b}| = \sqrt{(2)^2 + (-2)^2 + (3)^2} \] Calculating this: \[ |\vec{a} \times \vec{b}| = \sqrt{4 + 4 + 9} = \sqrt{17} \] ### Final Answer Thus, the magnitude of the cross product \(|\vec{a} \times \vec{b}|\) is: \[ \sqrt{17} \] ---

To find the magnitude of the cross product of the two vectors \(\vec{a}\) and \(\vec{b}\), we can follow these steps: ### Step 1: Write down the vectors Given: \[ \vec{a} = -\hat{i} + 2\hat{j} + 2\hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Integer type|17 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective type|19 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

The vector vec c , directed along the internal bisector of the angle between the vectors vec a = 7 hati - 4 hatj - 4hatk and vecb = -2hati - hatj + 2 hatk " with " |vec c| = 5 sqrt(6), is

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

find vecA xx vecB if vecA = hati - 2 hatj + 4 hatk and vecB = 3 hati - hatj + 2hatk

The angle between the two vectors vecA=hati+2hatj-hatk and vecB=-hati+hatj-2hatk

Given: vec p = - hati -3 hatj + 2hatk and vec r = hati + 3 hatj + 5hatk . Find vector parallel to electric field at position r. [ Note that vec p . vec r = 0 ]

If the sides of an angle are given by vectors veca=hati-2hatj+2hatk and vecb=2hati+hatj+2hatk , then find the internal bisector of the angle.

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

If two vectors are given as veca = hati - hatj + 2hatk and vecb = hati + 2hatj+hatk , the unit vector perpendicular to both vec a and vec b is

The projection of vector veca=2hati+3hatj+2hatk along vecb=hati+2hatj+1hatk is

Find the scalar product of vectors veca=2hati-hatj+2hatk and vecb=hati-3hatj-5hatk